MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreno Structured version   Visualization version   GIF version

Theorem elreno 28353
Description: Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elreno (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem elreno
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . . . . 5 (𝑦 = 𝐴 → (( -us𝑛) <s 𝑦 ↔ ( -us𝑛) <s 𝐴))
2 breq1 5113 . . . . 5 (𝑦 = 𝐴 → (𝑦 <s 𝑛𝐴 <s 𝑛))
31, 2anbi12d 632 . . . 4 (𝑦 = 𝐴 → ((( -us𝑛) <s 𝑦𝑦 <s 𝑛) ↔ (( -us𝑛) <s 𝐴𝐴 <s 𝑛)))
43rexbidv 3158 . . 3 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ↔ ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛)))
5 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
6 oveq1 7397 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 -s ( 1s /su 𝑛)) = (𝐴 -s ( 1s /su 𝑛)))
76eqeq2d 2741 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = (𝑦 -s ( 1s /su 𝑛)) ↔ 𝑥 = (𝐴 -s ( 1s /su 𝑛))))
87rexbidv 3158 . . . . . 6 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))))
98abbidv 2796 . . . . 5 (𝑦 = 𝐴 → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})
10 oveq1 7397 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 +s ( 1s /su 𝑛)) = (𝐴 +s ( 1s /su 𝑛)))
1110eqeq2d 2741 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = (𝑦 +s ( 1s /su 𝑛)) ↔ 𝑥 = (𝐴 +s ( 1s /su 𝑛))))
1211rexbidv 3158 . . . . . 6 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))))
1312abbidv 2796 . . . . 5 (𝑦 = 𝐴 → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
149, 13oveq12d 7408 . . . 4 (𝑦 = 𝐴 → ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}) = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
155, 14eqeq12d 2746 . . 3 (𝑦 = 𝐴 → (𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}) ↔ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})))
164, 15anbi12d 632 . 2 (𝑦 = 𝐴 → ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ∧ 𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))})) ↔ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
17 df-reno 28352 . 2 s = {𝑦 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ∧ 𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}))}
1816, 17elrab2 3665 1 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   |s cscut 27701   1s c1s 27742   +s cadds 27873   -us cnegs 27932   -s csubs 27933   /su cdivs 28097  scnns 28214  screno 28351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-reno 28352
This theorem is referenced by:  0reno  28355  renegscl  28356  readdscl  28357  remulscl  28360
  Copyright terms: Public domain W3C validator