MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreno Structured version   Visualization version   GIF version

Theorem elreno 28398
Description: Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elreno (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem elreno
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5123 . . . . 5 (𝑦 = 𝐴 → (( -us𝑛) <s 𝑦 ↔ ( -us𝑛) <s 𝐴))
2 breq1 5122 . . . . 5 (𝑦 = 𝐴 → (𝑦 <s 𝑛𝐴 <s 𝑛))
31, 2anbi12d 632 . . . 4 (𝑦 = 𝐴 → ((( -us𝑛) <s 𝑦𝑦 <s 𝑛) ↔ (( -us𝑛) <s 𝐴𝐴 <s 𝑛)))
43rexbidv 3164 . . 3 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ↔ ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛)))
5 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
6 oveq1 7412 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 -s ( 1s /su 𝑛)) = (𝐴 -s ( 1s /su 𝑛)))
76eqeq2d 2746 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = (𝑦 -s ( 1s /su 𝑛)) ↔ 𝑥 = (𝐴 -s ( 1s /su 𝑛))))
87rexbidv 3164 . . . . . 6 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))))
98abbidv 2801 . . . . 5 (𝑦 = 𝐴 → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})
10 oveq1 7412 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 +s ( 1s /su 𝑛)) = (𝐴 +s ( 1s /su 𝑛)))
1110eqeq2d 2746 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = (𝑦 +s ( 1s /su 𝑛)) ↔ 𝑥 = (𝐴 +s ( 1s /su 𝑛))))
1211rexbidv 3164 . . . . . 6 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))))
1312abbidv 2801 . . . . 5 (𝑦 = 𝐴 → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
149, 13oveq12d 7423 . . . 4 (𝑦 = 𝐴 → ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}) = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
155, 14eqeq12d 2751 . . 3 (𝑦 = 𝐴 → (𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}) ↔ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})))
164, 15anbi12d 632 . 2 (𝑦 = 𝐴 → ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ∧ 𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))})) ↔ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
17 df-reno 28397 . 2 s = {𝑦 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ∧ 𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}))}
1816, 17elrab2 3674 1 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405   No csur 27603   <s cslt 27604   |s cscut 27746   1s c1s 27787   +s cadds 27918   -us cnegs 27977   -s csubs 27978   /su cdivs 28142  scnns 28259  screno 28396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-reno 28397
This theorem is referenced by:  0reno  28400  renegscl  28401  readdscl  28402  remulscl  28405
  Copyright terms: Public domain W3C validator