MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreno Structured version   Visualization version   GIF version

Theorem elreno 28295
Description: Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elreno (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem elreno
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5153 . . . . 5 (𝑦 = 𝐴 → (( -us𝑛) <s 𝑦 ↔ ( -us𝑛) <s 𝐴))
2 breq1 5152 . . . . 5 (𝑦 = 𝐴 → (𝑦 <s 𝑛𝐴 <s 𝑛))
31, 2anbi12d 630 . . . 4 (𝑦 = 𝐴 → ((( -us𝑛) <s 𝑦𝑦 <s 𝑛) ↔ (( -us𝑛) <s 𝐴𝐴 <s 𝑛)))
43rexbidv 3168 . . 3 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ↔ ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛)))
5 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
6 oveq1 7426 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 -s ( 1s /su 𝑛)) = (𝐴 -s ( 1s /su 𝑛)))
76eqeq2d 2736 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = (𝑦 -s ( 1s /su 𝑛)) ↔ 𝑥 = (𝐴 -s ( 1s /su 𝑛))))
87rexbidv 3168 . . . . . 6 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))))
98abbidv 2794 . . . . 5 (𝑦 = 𝐴 → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})
10 oveq1 7426 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 +s ( 1s /su 𝑛)) = (𝐴 +s ( 1s /su 𝑛)))
1110eqeq2d 2736 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = (𝑦 +s ( 1s /su 𝑛)) ↔ 𝑥 = (𝐴 +s ( 1s /su 𝑛))))
1211rexbidv 3168 . . . . . 6 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))))
1312abbidv 2794 . . . . 5 (𝑦 = 𝐴 → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
149, 13oveq12d 7437 . . . 4 (𝑦 = 𝐴 → ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}) = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
155, 14eqeq12d 2741 . . 3 (𝑦 = 𝐴 → (𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}) ↔ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})))
164, 15anbi12d 630 . 2 (𝑦 = 𝐴 → ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ∧ 𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))})) ↔ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
17 df-reno 28294 . 2 s = {𝑦 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑦𝑦 <s 𝑛) ∧ 𝑦 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝑦 +s ( 1s /su 𝑛))}))}
1816, 17elrab2 3682 1 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3059   class class class wbr 5149  cfv 6549  (class class class)co 7419   No csur 27618   <s cslt 27619   |s cscut 27761   1s c1s 27802   +s cadds 27922   -us cnegs 27978   -s csubs 27979   /su cdivs 28137  scnns 28236  screno 28293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-reno 28294
This theorem is referenced by:  0reno  28297  renegscl  28298  readdscl  28299  remulscl  28302
  Copyright terms: Public domain W3C validator