Detailed syntax breakdown of Definition df-resv
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cresv 33351 | . 2
class 
↾v | 
| 2 |  | vw | . . 3
setvar 𝑤 | 
| 3 |  | vx | . . 3
setvar 𝑥 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 | 2 | cv 1538 | . . . . . . 7
class 𝑤 | 
| 6 |  | csca 17301 | . . . . . . 7
class
Scalar | 
| 7 | 5, 6 | cfv 6560 | . . . . . 6
class
(Scalar‘𝑤) | 
| 8 |  | cbs 17248 | . . . . . 6
class
Base | 
| 9 | 7, 8 | cfv 6560 | . . . . 5
class
(Base‘(Scalar‘𝑤)) | 
| 10 | 3 | cv 1538 | . . . . 5
class 𝑥 | 
| 11 | 9, 10 | wss 3950 | . . . 4
wff
(Base‘(Scalar‘𝑤)) ⊆ 𝑥 | 
| 12 |  | cnx 17231 | . . . . . . 7
class
ndx | 
| 13 | 12, 6 | cfv 6560 | . . . . . 6
class
(Scalar‘ndx) | 
| 14 |  | cress 17275 | . . . . . . 7
class 
↾s | 
| 15 | 7, 10, 14 | co 7432 | . . . . . 6
class
((Scalar‘𝑤)
↾s 𝑥) | 
| 16 | 13, 15 | cop 4631 | . . . . 5
class
〈(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)〉 | 
| 17 |  | csts 17201 | . . . . 5
class 
sSet | 
| 18 | 5, 16, 17 | co 7432 | . . . 4
class (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉) | 
| 19 | 11, 5, 18 | cif 4524 | . . 3
class
if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉)) | 
| 20 | 2, 3, 4, 4, 19 | cmpo 7434 | . 2
class (𝑤 ∈ V, 𝑥 ∈ V ↦
if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉))) | 
| 21 | 1, 20 | wceq 1539 | 1
wff 
↾v = (𝑤
∈ V, 𝑥 ∈ V
↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉))) |