Detailed syntax breakdown of Definition df-resv
| Step | Hyp | Ref
| Expression |
| 1 | | cresv 33335 |
. 2
class
↾v |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | vx |
. . 3
setvar 𝑥 |
| 4 | | cvv 3437 |
. . 3
class
V |
| 5 | 2 | cv 1540 |
. . . . . . 7
class 𝑤 |
| 6 | | csca 17171 |
. . . . . . 7
class
Scalar |
| 7 | 5, 6 | cfv 6489 |
. . . . . 6
class
(Scalar‘𝑤) |
| 8 | | cbs 17127 |
. . . . . 6
class
Base |
| 9 | 7, 8 | cfv 6489 |
. . . . 5
class
(Base‘(Scalar‘𝑤)) |
| 10 | 3 | cv 1540 |
. . . . 5
class 𝑥 |
| 11 | 9, 10 | wss 3898 |
. . . 4
wff
(Base‘(Scalar‘𝑤)) ⊆ 𝑥 |
| 12 | | cnx 17111 |
. . . . . . 7
class
ndx |
| 13 | 12, 6 | cfv 6489 |
. . . . . 6
class
(Scalar‘ndx) |
| 14 | | cress 17148 |
. . . . . . 7
class
↾s |
| 15 | 7, 10, 14 | co 7355 |
. . . . . 6
class
((Scalar‘𝑤)
↾s 𝑥) |
| 16 | 13, 15 | cop 4583 |
. . . . 5
class
〈(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)〉 |
| 17 | | csts 17081 |
. . . . 5
class
sSet |
| 18 | 5, 16, 17 | co 7355 |
. . . 4
class (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉) |
| 19 | 11, 5, 18 | cif 4476 |
. . 3
class
if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉)) |
| 20 | 2, 3, 4, 4, 19 | cmpo 7357 |
. 2
class (𝑤 ∈ V, 𝑥 ∈ V ↦
if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉))) |
| 21 | 1, 20 | wceq 1541 |
1
wff
↾v = (𝑤
∈ V, 𝑥 ∈ V
↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉))) |