Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvval Structured version   Visualization version   GIF version

Theorem resvval 30900
Description: Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvval ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))

Proof of Theorem resvval
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resvsca.r . 2 𝑅 = (𝑊v 𝐴)
2 elex 3512 . . 3 (𝑊𝑋𝑊 ∈ V)
3 elex 3512 . . 3 (𝐴𝑌𝐴 ∈ V)
4 ovex 7189 . . . . . 6 (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V
5 ifcl 4511 . . . . . 6 ((𝑊 ∈ V ∧ (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
64, 5mpan2 689 . . . . 5 (𝑊 ∈ V → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
76adantr 483 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
8 simpl 485 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑤 = 𝑊)
98fveq2d 6674 . . . . . . . . . 10 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = (Scalar‘𝑊))
10 resvsca.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
119, 10syl6eqr 2874 . . . . . . . . 9 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = 𝐹)
1211fveq2d 6674 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
13 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1412, 13syl6eqr 2874 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = 𝐵)
15 simpr 487 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑥 = 𝐴)
1614, 15sseq12d 4000 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Base‘(Scalar‘𝑤)) ⊆ 𝑥𝐵𝐴))
1711, 15oveq12d 7174 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Scalar‘𝑤) ↾s 𝑥) = (𝐹s 𝐴))
1817opeq2d 4810 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩ = ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)
198, 18oveq12d 7174 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
2016, 8, 19ifbieq12d 4494 . . . . 5 ((𝑤 = 𝑊𝑥 = 𝐴) → if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
21 df-resv 30898 . . . . 5 v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)))
2220, 21ovmpoga 7304 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
237, 22mpd3an3 1458 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
242, 3, 23syl2an 597 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
251, 24syl5eq 2868 1 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  ifcif 4467  cop 4573  cfv 6355  (class class class)co 7156  ndxcnx 16480   sSet csts 16481  Basecbs 16483  s cress 16484  Scalarcsca 16568  v cresv 30897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-resv 30898
This theorem is referenced by:  resvid2  30901  resvval2  30902
  Copyright terms: Public domain W3C validator