Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvval Structured version   Visualization version   GIF version

Theorem resvval 31526
Description: Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvval ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))

Proof of Theorem resvval
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resvsca.r . 2 𝑅 = (𝑊v 𝐴)
2 elex 3450 . . 3 (𝑊𝑋𝑊 ∈ V)
3 elex 3450 . . 3 (𝐴𝑌𝐴 ∈ V)
4 ovex 7308 . . . . . 6 (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V
5 ifcl 4504 . . . . . 6 ((𝑊 ∈ V ∧ (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
64, 5mpan2 688 . . . . 5 (𝑊 ∈ V → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
76adantr 481 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
8 simpl 483 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑤 = 𝑊)
98fveq2d 6778 . . . . . . . . . 10 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = (Scalar‘𝑊))
10 resvsca.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
119, 10eqtr4di 2796 . . . . . . . . 9 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = 𝐹)
1211fveq2d 6778 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
13 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1412, 13eqtr4di 2796 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = 𝐵)
15 simpr 485 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑥 = 𝐴)
1614, 15sseq12d 3954 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Base‘(Scalar‘𝑤)) ⊆ 𝑥𝐵𝐴))
1711, 15oveq12d 7293 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Scalar‘𝑤) ↾s 𝑥) = (𝐹s 𝐴))
1817opeq2d 4811 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩ = ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)
198, 18oveq12d 7293 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
2016, 8, 19ifbieq12d 4487 . . . . 5 ((𝑤 = 𝑊𝑥 = 𝐴) → if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
21 df-resv 31524 . . . . 5 v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)))
2220, 21ovmpoga 7427 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
237, 22mpd3an3 1461 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
242, 3, 23syl2an 596 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
251, 24eqtrid 2790 1 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ifcif 4459  cop 4567  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  Basecbs 16912  s cress 16941  Scalarcsca 16965  v cresv 31523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-resv 31524
This theorem is referenced by:  resvid2  31527  resvval2  31528
  Copyright terms: Public domain W3C validator