Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvval Structured version   Visualization version   GIF version

Theorem resvval 33318
Description: Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvval ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))

Proof of Theorem resvval
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resvsca.r . 2 𝑅 = (𝑊v 𝐴)
2 elex 3509 . . 3 (𝑊𝑋𝑊 ∈ V)
3 elex 3509 . . 3 (𝐴𝑌𝐴 ∈ V)
4 ovex 7481 . . . . . 6 (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V
5 ifcl 4593 . . . . . 6 ((𝑊 ∈ V ∧ (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
64, 5mpan2 690 . . . . 5 (𝑊 ∈ V → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
76adantr 480 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
8 simpl 482 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑤 = 𝑊)
98fveq2d 6924 . . . . . . . . . 10 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = (Scalar‘𝑊))
10 resvsca.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
119, 10eqtr4di 2798 . . . . . . . . 9 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = 𝐹)
1211fveq2d 6924 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
13 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1412, 13eqtr4di 2798 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = 𝐵)
15 simpr 484 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑥 = 𝐴)
1614, 15sseq12d 4042 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Base‘(Scalar‘𝑤)) ⊆ 𝑥𝐵𝐴))
1711, 15oveq12d 7466 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Scalar‘𝑤) ↾s 𝑥) = (𝐹s 𝐴))
1817opeq2d 4904 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩ = ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)
198, 18oveq12d 7466 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
2016, 8, 19ifbieq12d 4576 . . . . 5 ((𝑤 = 𝑊𝑥 = 𝐴) → if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
21 df-resv 33316 . . . . 5 v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)))
2220, 21ovmpoga 7604 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
237, 22mpd3an3 1462 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
242, 3, 23syl2an 595 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
251, 24eqtrid 2792 1 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  ifcif 4548  cop 4654  cfv 6573  (class class class)co 7448   sSet csts 17210  ndxcnx 17240  Basecbs 17258  s cress 17287  Scalarcsca 17314  v cresv 33315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-resv 33316
This theorem is referenced by:  resvid2  33319  resvval2  33320
  Copyright terms: Public domain W3C validator