Step | Hyp | Ref
| Expression |
1 | | resvsca.r |
. 2
⊢ 𝑅 = (𝑊 ↾v 𝐴) |
2 | | elex 3440 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
3 | | elex 3440 |
. . 3
⊢ (𝐴 ∈ 𝑌 → 𝐴 ∈ V) |
4 | | ovex 7288 |
. . . . . 6
⊢ (𝑊 sSet 〈(Scalar‘ndx),
(𝐹 ↾s
𝐴)〉) ∈
V |
5 | | ifcl 4501 |
. . . . . 6
⊢ ((𝑊 ∈ V ∧ (𝑊 sSet 〈(Scalar‘ndx),
(𝐹 ↾s
𝐴)〉) ∈ V) →
if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) ∈
V) |
6 | 4, 5 | mpan2 687 |
. . . . 5
⊢ (𝑊 ∈ V → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) ∈
V) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ V) → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) ∈
V) |
8 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → 𝑤 = 𝑊) |
9 | 8 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → (Scalar‘𝑤) = (Scalar‘𝑊)) |
10 | | resvsca.f |
. . . . . . . . . 10
⊢ 𝐹 = (Scalar‘𝑊) |
11 | 9, 10 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → (Scalar‘𝑤) = 𝐹) |
12 | 11 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
13 | | resvsca.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐹) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = 𝐵) |
15 | | simpr 484 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) |
16 | 14, 15 | sseq12d 3950 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → ((Base‘(Scalar‘𝑤)) ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐴)) |
17 | 11, 15 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → ((Scalar‘𝑤) ↾s 𝑥) = (𝐹 ↾s 𝐴)) |
18 | 17 | opeq2d 4808 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉 = 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉) |
19 | 8, 18 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉) = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) |
20 | 16, 8, 19 | ifbieq12d 4484 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑥 = 𝐴) → if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉)) = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
21 | | df-resv 31426 |
. . . . 5
⊢
↾v = (𝑤
∈ V, 𝑥 ∈ V
↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉))) |
22 | 20, 21 | ovmpoga 7405 |
. . . 4
⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) ∈ V) →
(𝑊 ↾v
𝐴) = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
23 | 7, 22 | mpd3an3 1460 |
. . 3
⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊 ↾v 𝐴) = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
24 | 2, 3, 23 | syl2an 595 |
. 2
⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾v 𝐴) = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
25 | 1, 24 | syl5eq 2791 |
1
⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |