| Metamath
Proof Explorer Theorem List (p. 325 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sumdmdlem2 32401* | Lemma for sumdmdi 32402. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | sumdmdi 32402 | The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of [Holland] p. 1519. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ↔ 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | dmdbr4ati 32403* | Dual modular pair property in terms of atoms. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
| Theorem | dmdbr5ati 32404* | Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
| Theorem | dmdbr6ati 32405* | Dual modular pair property in terms of atoms. The modular law takes the form of the shearing identity. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) | ||
| Theorem | dmdbr7ati 32406* | Dual modular pair property in terms of atoms. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
| Theorem | mdoc1i 32407 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ (⊥‘𝐴) | ||
| Theorem | mdoc2i 32408 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ 𝐴 | ||
| Theorem | dmdoc1i 32409 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ* (⊥‘𝐴) | ||
| Theorem | dmdoc2i 32410 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ* 𝐴 | ||
| Theorem | mdcompli 32411 | A condition equivalent to the modular pair property. Part of proof of Theorem 1.14 of [MaedaMaeda] p. 4. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | dmdcompli 32412 | A condition equivalent to the dual modular pair property. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | mddmdin0i 32413* | If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of [Holland] p. 1524 to hold. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | cdjreui 32414* | A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | cdj1i 32415* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑣)) ≤ (𝑤 · (normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ 𝑧))))) | ||
| Theorem | cdj3lem1 32416* | A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑧)) ≤ (𝑥 · (normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ) | ||
| Theorem | cdj3lem2 32417* | Lemma for cdj3i 32423. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) | ||
| Theorem | cdj3lem2a 32418* | Lemma for cdj3i 32423. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) | ||
| Theorem | cdj3lem2b 32419* | Lemma for cdj3i 32423. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
| Theorem | cdj3lem3 32420* | Lemma for cdj3i 32423. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) | ||
| Theorem | cdj3lem3a 32421* | Lemma for cdj3i 32423. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) | ||
| Theorem | cdj3lem3b 32422* | Lemma for cdj3i 32423. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
| Theorem | cdj3i 32423* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) & ⊢ (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) ↔ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝜑 ∧ 𝜓)) | ||
| Theorem | mathbox 32424 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of set.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of set.mm. Mathboxes are provided to help keep your work synchronized with changes in set.mm while allowing you to work independently without affecting other contributors. Even though in a sense your mathbox belongs to you, it is still part of the shared body of knowledge contained in set.mm, and occasionally other people may make maintenance edits to your mathbox for things like keeping it synchronized with the rest of set.mm, reducing proof lengths, moving your theorems to the main part of set.mm when needed, and fixing typos or other errors. If you want to preserve it the way you left it, you can keep a local copy or keep track of the GitHub commit number. Guidelines: 1. See conventions 30382 for our general style guidelines. For contributing via GitHub, see https://github.com/metamath/set.mm/blob/develop/CONTRIBUTING.md 30382. The Metamath program command "verify markup *" will check that you have followed many of the conventions we use. 2. If at all possible, please use only nullary class constants for new definitions, for example as in df-div 11782. 3. Each $p and $a statement must be immediately preceded with the comment that will be shown on its web page description. The Metamath program "MM> WRITE SOURCE set.mm / REWRAP" command will take care of indentation conventions and line wrapping. 4. All mathbox content will be on public display and should hopefully reflect the overall quality of the website. 5. Mathboxes must be independent from one another (checked by "verify markup *"). If you need a theorem from another mathbox, typically it is moved to the main part of set.mm. New users should consult with more experienced users before doing this. 6. If a contributor is no longer active, we will continue the usual maintenance edits. As time goes on, often theorems will be moved to main or removed in favor of similar replacements. But we are also willing to maintain mathboxes in place, as work by others from years ago may form the foundation of future work; you could even argue that all of mathematics is like that. 7. For theorems of importance (for example, a Metamath 100 theorem or a dependency of one), we prefer to eventually move them out of mathboxes (although a mathbox is perfectly appropriate as proofs are being developed and refined). (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | sa-abvi 32425 | A theorem about the universal class. Inference associated with bj-abv 36971 (which is proved from fewer axioms). (Contributed by Stefan Allan, 9-Dec-2008.) |
| ⊢ 𝜑 ⇒ ⊢ V = {𝑥 ∣ 𝜑} | ||
| Theorem | xfree 32426 | A partial converse to 19.9t 2209. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
| Theorem | xfree2 32427 | A partial converse to 19.9t 2209. (Contributed by Stefan Allan, 21-Dec-2008.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
| Theorem | addltmulALT 32428 | A proof readability experiment for addltmul 12364. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)) | ||
| Theorem | ad11antr 32429 | Deduction adding 11 conjuncts to antecedent. (Contributed by Thierry Arnoux, 27-Sep-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | simp-12l 32430 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜑) | ||
| Theorem | simp-12r 32431 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | an52ds 32432 | Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂) | ||
| Theorem | an62ds 32433 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ ((((((𝜑 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜁) | ||
| Theorem | an72ds 32434 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((((((𝜑 ∧ 𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎) | ||
| Theorem | an82ds 32435 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ ((((((((𝜑 ∧ 𝜎) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜓) → 𝜌) | ||
| Theorem | syl22anbrc 32436 | Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜂 ↔ ((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏))) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | bian1d 32437 | Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof shortened by Hongxiu Chen, 29-Jun-2025.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | bian1dOLD 32438 | Obsolete version of bian1d 32437 as of 29-Jun-2025. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | orim12da 32439 | Deduce a disjunction from another one. Variation on orim12d 966. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜏) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → (𝜃 ∨ 𝜏)) | ||
| Theorem | or3di 32440 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | ||
| Theorem | or3dir 32441 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) | ||
| Theorem | 3o1cs 32442 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | 3o2cs 32443 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | 3o3cs 32444 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
| Theorem | 13an22anass 32445 | Associative law for four conjunctions with a triple conjunction. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
| Theorem | sbc2iedf 32446* | Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
| Theorem | rspc2daf 32447* | Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | ralcom4f 32448* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexcom4f 32449* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | 19.9d2rf 32450 | A deduction version of one direction of 19.9 2210 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 19.9d2r 32451* | A deduction version of one direction of 19.9 2210 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | r19.29ffa 32452* | A commonly used pattern based on r19.29 3096, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
| ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) | ||
| Theorem | n0limd 32453* | Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | reu6dv 32454* | A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | eqtrb 32455 | A transposition of equality. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
| Theorem | eqelbid 32456* | A variable elimination law for equality within a given set 𝐴. See equvel 2458. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | opsbc2ie 32457* | Conversion of implicit substitution to explicit class substitution for ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) | ||
| Theorem | opreu2reuALT 32458* | Correspondence between uniqueness of ordered pairs and double restricted existential uniqueness quantification. Alternate proof of one direction only, use opreu2reurex 6246 instead. (Contributed by Thierry Arnoux, 4-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) | ||
| Syntax | w2reu 32459 | Syntax for double restricted existential uniqueness quantification. |
| wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 | ||
| Definition | df-2reu 32460 | Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | 2reucom 32461 | Double restricted existential uniqueness commutes. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑦 ∈ 𝐵 , 𝑥 ∈ 𝐴𝜑) | ||
| Theorem | 2reu2rex1 32462 | Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | 2reureurex 32463 | Double restricted existential uniqueness implies restricted existential uniqueness with restricted existence. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | 2reu2reu2 32464* | Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | opreu2reu1 32465* | Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜒 ↔ 𝜑)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) | ||
| Theorem | sq2reunnltb 32466* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Double restricted existential uniqueness variant of 2sqreunnltb 27400. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ , 𝑏 ∈ ℕ(𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
| Theorem | addsqnot2reu 32467* | For each complex number 𝐶, there does not uniquely exist two complex numbers 𝑎 and 𝑏, with 𝑏 squared and added to 𝑎 resulting in the given complex number 𝐶. Double restricted existential uniqueness variant of addsqn2reurex2 27384. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ , 𝑏 ∈ ℂ(𝑎 + (𝑏↑2)) = 𝐶) | ||
| Theorem | sbceqbidf 32468 | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
| Theorem | sbcies 32469* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝐴 = (𝐸‘𝑊) & ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) | ||
| Theorem | mo5f 32470* | Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) | ||
| Theorem | nmo 32471* | Negation of "at most one". (Contributed by Thierry Arnoux, 26-Feb-2017.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (¬ ∃*𝑥𝜑 ↔ ∀𝑦∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) | ||
| Theorem | reuxfrdf 32472* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfrd 3703 (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) (Revised by Thierry Arnoux, 30-Mar-2018.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) | ||
| Theorem | rexunirn 32473* | Restricted existential quantification over the union of the range of a function. Cf. rexrn 7026 and eluni2 4862. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ ∪ ran 𝐹𝜑) | ||
| Theorem | rmoxfrd 32474* | Transfer "at most one" restricted quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rmoun 32475 | "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rmounid 32476* | A case where an "at most one" restricted existential quantifier for a union is equivalent to such a quantifier for one of the sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝜓) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | riotaeqbidva 32477* | Equivalent wff's yield equal restricted definition binders (deduction form). (raleqbidva 3299 analog.) (Contributed by Thierry Arnoux, 29-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | dmrab 32478* | Domain of a restricted class abstraction over a cartesian product. (Contributed by Thierry Arnoux, 3-Jul-2023.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝜓} | ||
| Theorem | difrab2 32479 | Difference of two restricted class abstractions. Compare with difrab 4267. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐵 ∣ 𝜑}) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
| Theorem | elrabrd 32480* | Deduction version of elrab 3643, just like elrabd 3645, but backwards direction. (Contributed by Thierry Arnoux, 15-Jan-2026.) |
| ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | rabexgfGS 32481 | Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | rabsnel 32482* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ 𝐴) | ||
| Theorem | rabsspr 32483* | Conditions for a restricted class abstraction to be a subset of an unordered pair. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌))) | ||
| Theorem | rabsstp 32484* | Conditions for a restricted class abstraction to be a subset of an unordered triple. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
| Theorem | 3unrab 32485 | Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} | ||
| Theorem | foresf1o 32486* | From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) | ||
| Theorem | rabfodom 32487* | Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
| Theorem | rabrexfi 32488* | Conditions for a class abstraction with a restricted existential quantification to be finite. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝜓} ∈ Fin) | ||
| Theorem | abrexdomjm 32489* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) | ||
| Theorem | abrexdom2jm 32490* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵} ≼ 𝐴) | ||
| Theorem | abrexexd 32491* | Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | elabreximd 32492* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
| Theorem | elabreximdv 32493* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
| ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
| Theorem | abrexss 32494* | A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) | ||
| Theorem | nelun 32495 | Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) | ||
| Theorem | snsssng 32496 | If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) | ||
| Theorem | n0nsnel 32497* | If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) (Revised by Thierry Arnoux, 28-May-2025.) |
| ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
| Theorem | inin 32498 | Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) | ||
| Theorem | difininv 32499 | Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
| ⊢ ((((𝐴 ∖ 𝐶) ∩ 𝐵) = ∅ ∧ ((𝐶 ∖ 𝐴) ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = (𝐶 ∩ 𝐵)) | ||
| Theorem | difeq 32500 | Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ ((𝐴 ∖ 𝐵) = 𝐶 ↔ ((𝐶 ∩ 𝐵) = ∅ ∧ (𝐶 ∪ 𝐵) = (𝐴 ∪ 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |