| Metamath
Proof Explorer Theorem List (p. 325 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mdoc2i 32401 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ 𝐴 | ||
| Theorem | dmdoc1i 32402 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ* (⊥‘𝐴) | ||
| Theorem | dmdoc2i 32403 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ* 𝐴 | ||
| Theorem | mdcompli 32404 | A condition equivalent to the modular pair property. Part of proof of Theorem 1.14 of [MaedaMaeda] p. 4. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | dmdcompli 32405 | A condition equivalent to the dual modular pair property. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | mddmdin0i 32406* | If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of [Holland] p. 1524 to hold. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | cdjreui 32407* | A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | cdj1i 32408* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑣)) ≤ (𝑤 · (normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ 𝑧))))) | ||
| Theorem | cdj3lem1 32409* | A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑧)) ≤ (𝑥 · (normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ) | ||
| Theorem | cdj3lem2 32410* | Lemma for cdj3i 32416. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) | ||
| Theorem | cdj3lem2a 32411* | Lemma for cdj3i 32416. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) | ||
| Theorem | cdj3lem2b 32412* | Lemma for cdj3i 32416. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
| Theorem | cdj3lem3 32413* | Lemma for cdj3i 32416. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) | ||
| Theorem | cdj3lem3a 32414* | Lemma for cdj3i 32416. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) | ||
| Theorem | cdj3lem3b 32415* | Lemma for cdj3i 32416. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
| Theorem | cdj3i 32416* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) & ⊢ (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) ↔ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝜑 ∧ 𝜓)) | ||
| Theorem | mathbox 32417 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of set.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of set.mm. Mathboxes are provided to help keep your work synchronized with changes in set.mm while allowing you to work independently without affecting other contributors. Even though in a sense your mathbox belongs to you, it is still part of the shared body of knowledge contained in set.mm, and occasionally other people may make maintenance edits to your mathbox for things like keeping it synchronized with the rest of set.mm, reducing proof lengths, moving your theorems to the main part of set.mm when needed, and fixing typos or other errors. If you want to preserve it the way you left it, you can keep a local copy or keep track of the GitHub commit number. Guidelines: 1. See conventions 30375 for our general style guidelines. For contributing via GitHub, see https://github.com/metamath/set.mm/blob/develop/CONTRIBUTING.md 30375. The Metamath program command "verify markup *" will check that you have followed many of the conventions we use. 2. If at all possible, please use only nullary class constants for new definitions, for example as in df-div 11772. 3. Each $p and $a statement must be immediately preceded with the comment that will be shown on its web page description. The Metamath program "MM> WRITE SOURCE set.mm / REWRAP" command will take care of indentation conventions and line wrapping. 4. All mathbox content will be on public display and should hopefully reflect the overall quality of the website. 5. Mathboxes must be independent from one another (checked by "verify markup *"). If you need a theorem from another mathbox, typically it is moved to the main part of set.mm. New users should consult with more experienced users before doing this. 6. If a contributor is no longer active, we will continue the usual maintenance edits. As time goes on, often theorems will be moved to main or removed in favor of similar replacements. But we are also willing to maintain mathboxes in place, as work by others from years ago may form the foundation of future work; you could even argue that all of mathematics is like that. 7. For theorems of importance (for example, a Metamath 100 theorem or a dependency of one), we prefer to eventually move them out of mathboxes (although a mathbox is perfectly appropriate as proofs are being developed and refined). (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | sa-abvi 32418 | A theorem about the universal class. Inference associated with bj-abv 36939 (which is proved from fewer axioms). (Contributed by Stefan Allan, 9-Dec-2008.) |
| ⊢ 𝜑 ⇒ ⊢ V = {𝑥 ∣ 𝜑} | ||
| Theorem | xfree 32419 | A partial converse to 19.9t 2207. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
| Theorem | xfree2 32420 | A partial converse to 19.9t 2207. (Contributed by Stefan Allan, 21-Dec-2008.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
| Theorem | addltmulALT 32421 | A proof readability experiment for addltmul 12354. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)) | ||
| Theorem | ad11antr 32422 | Deduction adding 11 conjuncts to antecedent. (Contributed by Thierry Arnoux, 27-Sep-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | simp-12l 32423 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜑) | ||
| Theorem | simp-12r 32424 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | an52ds 32425 | Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂) | ||
| Theorem | an62ds 32426 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ ((((((𝜑 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜁) | ||
| Theorem | an72ds 32427 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((((((𝜑 ∧ 𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎) | ||
| Theorem | an82ds 32428 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ ((((((((𝜑 ∧ 𝜎) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜓) → 𝜌) | ||
| Theorem | syl22anbrc 32429 | Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜂 ↔ ((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏))) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | bian1d 32430 | Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof shortened by Hongxiu Chen, 29-Jun-2025.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | bian1dOLD 32431 | Obsolete version of bian1d 32430 as of 29-Jun-2025. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | orim12da 32432 | Deduce a disjunction from another one. Variation on orim12d 966. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜏) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → (𝜃 ∨ 𝜏)) | ||
| Theorem | or3di 32433 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | ||
| Theorem | or3dir 32434 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) | ||
| Theorem | 3o1cs 32435 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | 3o2cs 32436 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | 3o3cs 32437 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
| Theorem | 13an22anass 32438 | Associative law for four conjunctions with a triple conjunction. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
| Theorem | sbc2iedf 32439* | Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
| Theorem | rspc2daf 32440* | Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | ralcom4f 32441* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexcom4f 32442* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | 19.9d2rf 32443 | A deduction version of one direction of 19.9 2208 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 19.9d2r 32444* | A deduction version of one direction of 19.9 2208 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | r19.29ffa 32445* | A commonly used pattern based on r19.29 3095, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
| ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) | ||
| Theorem | n0limd 32446* | Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | reu6dv 32447* | A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | eqtrb 32448 | A transposition of equality. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
| Theorem | eqelbid 32449* | A variable elimination law for equality within a given set 𝐴. See equvel 2456. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | opsbc2ie 32450* | Conversion of implicit substitution to explicit class substitution for ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) | ||
| Theorem | opreu2reuALT 32451* | Correspondence between uniqueness of ordered pairs and double restricted existential uniqueness quantification. Alternate proof of one direction only, use opreu2reurex 6241 instead. (Contributed by Thierry Arnoux, 4-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) | ||
| Syntax | w2reu 32452 | Syntax for double restricted existential uniqueness quantification. |
| wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 | ||
| Definition | df-2reu 32453 | Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | 2reucom 32454 | Double restricted existential uniqueness commutes. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑦 ∈ 𝐵 , 𝑥 ∈ 𝐴𝜑) | ||
| Theorem | 2reu2rex1 32455 | Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | 2reureurex 32456 | Double restricted existential uniqueness implies restricted existential uniqueness with restricted existence. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | 2reu2reu2 32457* | Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | opreu2reu1 32458* | Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜒 ↔ 𝜑)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) | ||
| Theorem | sq2reunnltb 32459* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Double restricted existential uniqueness variant of 2sqreunnltb 27397. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ , 𝑏 ∈ ℕ(𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
| Theorem | addsqnot2reu 32460* | For each complex number 𝐶, there does not uniquely exist two complex numbers 𝑎 and 𝑏, with 𝑏 squared and added to 𝑎 resulting in the given complex number 𝐶. Double restricted existential uniqueness variant of addsqn2reurex2 27381. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ , 𝑏 ∈ ℂ(𝑎 + (𝑏↑2)) = 𝐶) | ||
| Theorem | sbceqbidf 32461 | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
| Theorem | sbcies 32462* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝐴 = (𝐸‘𝑊) & ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) | ||
| Theorem | mo5f 32463* | Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) | ||
| Theorem | nmo 32464* | Negation of "at most one". (Contributed by Thierry Arnoux, 26-Feb-2017.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (¬ ∃*𝑥𝜑 ↔ ∀𝑦∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) | ||
| Theorem | reuxfrdf 32465* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfrd 3707 (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) (Revised by Thierry Arnoux, 30-Mar-2018.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) | ||
| Theorem | rexunirn 32466* | Restricted existential quantification over the union of the range of a function. Cf. rexrn 7020 and eluni2 4863. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ ∪ ran 𝐹𝜑) | ||
| Theorem | rmoxfrd 32467* | Transfer "at most one" restricted quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rmoun 32468 | "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rmounid 32469* | A case where an "at most one" restricted existential quantifier for a union is equivalent to such a quantifier for one of the sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝜓) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | riotaeqbidva 32470* | Equivalent wff's yield equal restricted definition binders (deduction form). (raleqbidva 3298 analog.) (Contributed by Thierry Arnoux, 29-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | dmrab 32471* | Domain of a restricted class abstraction over a cartesian product. (Contributed by Thierry Arnoux, 3-Jul-2023.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝜓} | ||
| Theorem | difrab2 32472 | Difference of two restricted class abstractions. Compare with difrab 4268. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐵 ∣ 𝜑}) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
| Theorem | elrabrd 32473* | Deduction version of elrab 3647, just like elrabd 3649, but backwards direction. (Contributed by Thierry Arnoux, 15-Jan-2026.) |
| ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | rabexgfGS 32474 | Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | rabsnel 32475* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ 𝐴) | ||
| Theorem | rabsspr 32476* | Conditions for a restricted class abstraction to be a subset of an unordered pair. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌))) | ||
| Theorem | rabsstp 32477* | Conditions for a restricted class abstraction to be a subset of an unordered triple. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
| Theorem | 3unrab 32478 | Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} | ||
| Theorem | foresf1o 32479* | From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) | ||
| Theorem | rabfodom 32480* | Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
| Theorem | rabrexfi 32481* | Conditions for a class abstraction with a restricted existential quantification to be finite. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝜓} ∈ Fin) | ||
| Theorem | abrexdomjm 32482* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) | ||
| Theorem | abrexdom2jm 32483* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵} ≼ 𝐴) | ||
| Theorem | abrexexd 32484* | Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | elabreximd 32485* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
| Theorem | elabreximdv 32486* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
| ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
| Theorem | abrexss 32487* | A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) | ||
| Theorem | nelun 32488 | Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) | ||
| Theorem | snsssng 32489 | If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) | ||
| Theorem | n0nsnel 32490* | If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) (Revised by Thierry Arnoux, 28-May-2025.) |
| ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
| Theorem | inin 32491 | Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) | ||
| Theorem | difininv 32492 | Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
| ⊢ ((((𝐴 ∖ 𝐶) ∩ 𝐵) = ∅ ∧ ((𝐶 ∖ 𝐴) ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = (𝐶 ∩ 𝐵)) | ||
| Theorem | difeq 32493 | Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ ((𝐴 ∖ 𝐵) = 𝐶 ↔ ((𝐶 ∩ 𝐵) = ∅ ∧ (𝐶 ∪ 𝐵) = (𝐴 ∪ 𝐵))) | ||
| Theorem | eqdif 32494 | If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
| ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) | ||
| Theorem | indifbi 32495 | Two ways to express equality relative to a class 𝐴. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) | ||
| Theorem | diffib 32496 | Case where diffi 9084 is a biconditional. (Contributed by Thierry Arnoux, 27-Jun-2024.) |
| ⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin ↔ (𝐴 ∖ 𝐵) ∈ Fin)) | ||
| Theorem | difxp1ss 32497 | Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| ⊢ ((𝐴 ∖ 𝐶) × 𝐵) ⊆ (𝐴 × 𝐵) | ||
| Theorem | difxp2ss 32498 | Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| ⊢ (𝐴 × (𝐵 ∖ 𝐶)) ⊆ (𝐴 × 𝐵) | ||
| Theorem | indifundif 32499 | A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020.) |
| ⊢ (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ (𝐴 ∖ 𝐵)) = (𝐴 ∖ (𝐵 ∩ 𝐶)) | ||
| Theorem | elpwincl1 32500 | Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |