| Metamath
Proof Explorer Theorem List (p. 325 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cdj3lem3a 32401* | Lemma for cdj3i 32403. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) | ||
| Theorem | cdj3lem3b 32402* | Lemma for cdj3i 32403. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
| Theorem | cdj3i 32403* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) & ⊢ (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) ↔ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝜑 ∧ 𝜓)) | ||
| Theorem | mathbox 32404 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of set.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of set.mm. Mathboxes are provided to help keep your work synchronized with changes in set.mm while allowing you to work independently without affecting other contributors. Even though in a sense your mathbox belongs to you, it is still part of the shared body of knowledge contained in set.mm, and occasionally other people may make maintenance edits to your mathbox for things like keeping it synchronized with the rest of set.mm, reducing proof lengths, moving your theorems to the main part of set.mm when needed, and fixing typos or other errors. If you want to preserve it the way you left it, you can keep a local copy or keep track of the GitHub commit number. Guidelines: 1. See conventions 30362 for our general style guidelines. For contributing via GitHub, see https://github.com/metamath/set.mm/blob/develop/CONTRIBUTING.md 30362. The Metamath program command "verify markup *" will check that you have followed many of the conventions we use. 2. If at all possible, please use only nullary class constants for new definitions, for example as in df-div 11796. 3. Each $p and $a statement must be immediately preceded with the comment that will be shown on its web page description. The Metamath program "MM> WRITE SOURCE set.mm / REWRAP" command will take care of indentation conventions and line wrapping. 4. All mathbox content will be on public display and should hopefully reflect the overall quality of the website. 5. Mathboxes must be independent from one another (checked by "verify markup *"). If you need a theorem from another mathbox, typically it is moved to the main part of set.mm. New users should consult with more experienced users before doing this. 6. If a contributor is no longer active, we will continue the usual maintenance edits. As time goes on, often theorems will be moved to main or removed in favor of similar replacements. But we are also willing to maintain mathboxes in place, as work by others from years ago may form the foundation of future work; you could even argue that all of mathematics is like that. 7. For theorems of importance (for example, a Metamath 100 theorem or a dependency of one), we prefer to eventually move them out of mathboxes (although a mathbox is perfectly appropriate as proofs are being developed and refined). (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | sa-abvi 32405 | A theorem about the universal class. Inference associated with bj-abv 36879 (which is proved from fewer axioms). (Contributed by Stefan Allan, 9-Dec-2008.) |
| ⊢ 𝜑 ⇒ ⊢ V = {𝑥 ∣ 𝜑} | ||
| Theorem | xfree 32406 | A partial converse to 19.9t 2205. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
| Theorem | xfree2 32407 | A partial converse to 19.9t 2205. (Contributed by Stefan Allan, 21-Dec-2008.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
| Theorem | addltmulALT 32408 | A proof readability experiment for addltmul 12378. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)) | ||
| Theorem | ad11antr 32409 | Deduction adding 11 conjuncts to antecedent. (Contributed by Thierry Arnoux, 27-Sep-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | simp-12l 32410 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜑) | ||
| Theorem | simp-12r 32411 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | an42ds 32412 | Inference exchanging the last antecedent with the second one. See also an32s 652. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏) | ||
| Theorem | an52ds 32413 | Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂) | ||
| Theorem | an62ds 32414 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ ((((((𝜑 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜁) | ||
| Theorem | an72ds 32415 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((((((𝜑 ∧ 𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎) | ||
| Theorem | an82ds 32416 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ ((((((((𝜑 ∧ 𝜎) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜓) → 𝜌) | ||
| Theorem | syl22anbrc 32417 | Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜂 ↔ ((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏))) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | bian1d 32418 | Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof shortened by Hongxiu Chen, 29-Jun-2025.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | bian1dOLD 32419 | Obsolete version of bian1d 32418 as of 29-Jun-2025. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | orim12da 32420 | Deduce a disjunction from another one. Variation on orim12d 966. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜏) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → (𝜃 ∨ 𝜏)) | ||
| Theorem | or3di 32421 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | ||
| Theorem | or3dir 32422 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) | ||
| Theorem | 3o1cs 32423 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | 3o2cs 32424 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | 3o3cs 32425 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
| Theorem | 13an22anass 32426 | Associative law for four conjunctions with a triple conjunction. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
| Theorem | sbc2iedf 32427* | Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
| Theorem | rspc2daf 32428* | Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | ralcom4f 32429* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexcom4f 32430* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | 19.9d2rf 32431 | A deduction version of one direction of 19.9 2206 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 19.9d2r 32432* | A deduction version of one direction of 19.9 2206 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | r19.29ffa 32433* | A commonly used pattern based on r19.29 3092, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
| ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) | ||
| Theorem | n0limd 32434* | Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | reu6dv 32435* | A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | eqtrb 32436 | A transposition of equality. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
| Theorem | eqelbid 32437* | A variable elimination law for equality within a given set 𝐴. See equvel 2454. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | opsbc2ie 32438* | Conversion of implicit substitution to explicit class substitution for ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) | ||
| Theorem | opreu2reuALT 32439* | Correspondence between uniqueness of ordered pairs and double restricted existential uniqueness quantification. Alternate proof of one direction only, use opreu2reurex 6246 instead. (Contributed by Thierry Arnoux, 4-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) | ||
| Syntax | w2reu 32440 | Syntax for double restricted existential uniqueness quantification. |
| wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 | ||
| Definition | df-2reu 32441 | Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | 2reucom 32442 | Double restricted existential uniqueness commutes. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑦 ∈ 𝐵 , 𝑥 ∈ 𝐴𝜑) | ||
| Theorem | 2reu2rex1 32443 | Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | 2reureurex 32444 | Double restricted existential uniqueness implies restricted existential uniqueness with restricted existence. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | 2reu2reu2 32445* | Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | ||
| Theorem | opreu2reu1 32446* | Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜒 ↔ 𝜑)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) | ||
| Theorem | sq2reunnltb 32447* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Double restricted existential uniqueness variant of 2sqreunnltb 27388. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ , 𝑏 ∈ ℕ(𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
| Theorem | addsqnot2reu 32448* | For each complex number 𝐶, there does not uniquely exist two complex numbers 𝑎 and 𝑏, with 𝑏 squared and added to 𝑎 resulting in the given complex number 𝐶. Double restricted existential uniqueness variant of addsqn2reurex2 27372. (Contributed by AV, 5-Jul-2023.) |
| ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ , 𝑏 ∈ ℂ(𝑎 + (𝑏↑2)) = 𝐶) | ||
| Theorem | sbceqbidf 32449 | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
| Theorem | sbcies 32450* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝐴 = (𝐸‘𝑊) & ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) | ||
| Theorem | mo5f 32451* | Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) | ||
| Theorem | nmo 32452* | Negation of "at most one". (Contributed by Thierry Arnoux, 26-Feb-2017.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (¬ ∃*𝑥𝜑 ↔ ∀𝑦∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) | ||
| Theorem | reuxfrdf 32453* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfrd 3710 (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) (Revised by Thierry Arnoux, 30-Mar-2018.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) | ||
| Theorem | rexunirn 32454* | Restricted existential quantification over the union of the range of a function. Cf. rexrn 7025 and eluni2 4865. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ ∪ ran 𝐹𝜑) | ||
| Theorem | rmoxfrd 32455* | Transfer "at most one" restricted quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rmoun 32456 | "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rmounid 32457* | A case where an "at most one" restricted existential quantifier for a union is equivalent to such a quantifier for one of the sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝜓) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | riotaeqbidva 32458* | Equivalent wff's yield equal restricted definition binders (deduction form). (raleqbidva 3296 analog.) (Contributed by Thierry Arnoux, 29-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | dmrab 32459* | Domain of a restricted class abstraction over a cartesian product. (Contributed by Thierry Arnoux, 3-Jul-2023.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝜓} | ||
| Theorem | difrab2 32460 | Difference of two restricted class abstractions. Compare with difrab 4271. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐵 ∣ 𝜑}) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
| Theorem | rabexgfGS 32461 | Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | rabsnel 32462* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ 𝐴) | ||
| Theorem | rabsspr 32463* | Conditions for a restricted class abstraction to be a subset of an unordered pair. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌))) | ||
| Theorem | rabsstp 32464* | Conditions for a restricted class abstraction to be a subset of an unordered triple. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
| Theorem | 3unrab 32465 | Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} | ||
| Theorem | foresf1o 32466* | From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) | ||
| Theorem | rabfodom 32467* | Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
| Theorem | rabrexfi 32468* | Conditions for a class abstraction with a restricted existential quantification to be finite. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝜓} ∈ Fin) | ||
| Theorem | abrexdomjm 32469* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) | ||
| Theorem | abrexdom2jm 32470* | An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵} ≼ 𝐴) | ||
| Theorem | abrexexd 32471* | Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
| Theorem | elabreximd 32472* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
| Theorem | elabreximdv 32473* | Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
| ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) | ||
| Theorem | abrexss 32474* | A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) | ||
| Theorem | nelun 32475 | Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) | ||
| Theorem | snsssng 32476 | If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) | ||
| Theorem | n0nsnel 32477* | If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) (Revised by Thierry Arnoux, 28-May-2025.) |
| ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
| Theorem | inin 32478 | Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) | ||
| Theorem | difininv 32479 | Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
| ⊢ ((((𝐴 ∖ 𝐶) ∩ 𝐵) = ∅ ∧ ((𝐶 ∖ 𝐴) ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = (𝐶 ∩ 𝐵)) | ||
| Theorem | difeq 32480 | Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ ((𝐴 ∖ 𝐵) = 𝐶 ↔ ((𝐶 ∩ 𝐵) = ∅ ∧ (𝐶 ∪ 𝐵) = (𝐴 ∪ 𝐵))) | ||
| Theorem | eqdif 32481 | If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
| ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) | ||
| Theorem | indifbi 32482 | Two ways to express equality relative to a class 𝐴. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) | ||
| Theorem | diffib 32483 | Case where diffi 9099 is a biconditional. (Contributed by Thierry Arnoux, 27-Jun-2024.) |
| ⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin ↔ (𝐴 ∖ 𝐵) ∈ Fin)) | ||
| Theorem | difxp1ss 32484 | Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| ⊢ ((𝐴 ∖ 𝐶) × 𝐵) ⊆ (𝐴 × 𝐵) | ||
| Theorem | difxp2ss 32485 | Difference law for Cartesian products. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| ⊢ (𝐴 × (𝐵 ∖ 𝐶)) ⊆ (𝐴 × 𝐵) | ||
| Theorem | indifundif 32486 | A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020.) |
| ⊢ (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ (𝐴 ∖ 𝐵)) = (𝐴 ∖ (𝐵 ∩ 𝐶)) | ||
| Theorem | elpwincl1 32487 | Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) | ||
| Theorem | elpwdifcl 32488 | Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) | ||
| Theorem | elpwiuncl 32489* | Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) | ||
| Theorem | elpreq 32490 | Equality wihin a pair. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ {𝐴, 𝐵}) & ⊢ (𝜑 → 𝑌 ∈ {𝐴, 𝐵}) & ⊢ (𝜑 → (𝑋 = 𝐴 ↔ 𝑌 = 𝐴)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | prssad 32491 | If a pair is a subset of a class, the first element of the pair is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
| Theorem | prssbd 32492 | If a pair is a subset of a class, the second element of the pair is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝐶) | ||
| Theorem | nelpr 32493 | A set 𝐴 not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶))) | ||
| Theorem | inpr0 32494 | Rewrite an empty intersection with a pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) | ||
| Theorem | neldifpr1 32495 | The first element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| ⊢ ¬ 𝐴 ∈ (𝐶 ∖ {𝐴, 𝐵}) | ||
| Theorem | neldifpr2 32496 | The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| ⊢ ¬ 𝐵 ∈ (𝐶 ∖ {𝐴, 𝐵}) | ||
| Theorem | unidifsnel 32497 | The other element of a pair is an element of the pair. (Contributed by Thierry Arnoux, 26-Aug-2017.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) | ||
| Theorem | unidifsnne 32498 | The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) | ||
| Theorem | tpssg 32499 | An unordered triple of elements of a class is a subset of the class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)) | ||
| Theorem | tpssd 32500 | Deduction version of tpssi : An unordered triple of elements of a class is a subset of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |