Home | Metamath
Proof Explorer Theorem List (p. 325 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ballotlem1ri 32401* | When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (𝐼‘𝐶) ∈ 𝐶)) | ||
Theorem | ballotlem7 32402* | 𝑅 is a bijection between two subsets of (𝑂 ∖ 𝐸): one where a vote for A is picked first, and one where a vote for B is picked first. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝑅 ↾ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} | ||
Theorem | ballotlem8 32403* | There are as many countings with ties starting with a ballot for 𝐴 as there are starting with a ballot for 𝐵. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) | ||
Theorem | ballotth 32404* | Bertrand's ballot problem : the probability that A is ahead throughout the counting. The proof formalized here is a proof "by reflection", as opposed to other known proofs "by induction" or "by permutation". This is Metamath 100 proof #30. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝑃‘𝐸) = ((𝑀 − 𝑁) / (𝑀 + 𝑁)) | ||
Theorem | sgncl 32405 | Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) | ||
Theorem | sgnclre 32406 | Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
⊢ (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ) | ||
Theorem | sgnneg 32407 | Negation of the signum. (Contributed by Thierry Arnoux, 1-Oct-2018.) |
⊢ (𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴)) | ||
Theorem | sgn3da 32408 | A conditional containing a signum is true if it is true in all three possible cases. (Contributed by Thierry Arnoux, 1-Oct-2018.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((sgn‘𝐴) = 0 → (𝜓 ↔ 𝜒)) & ⊢ ((sgn‘𝐴) = 1 → (𝜓 ↔ 𝜃)) & ⊢ ((sgn‘𝐴) = -1 → (𝜓 ↔ 𝜏)) & ⊢ ((𝜑 ∧ 𝐴 = 0) → 𝜒) & ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝜃) & ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝜏) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | sgnmul 32409 | Signum of a product. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵))) | ||
Theorem | sgnmulrp2 32410 | Multiplication by a positive number does not affect signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (sgn‘(𝐴 · 𝐵)) = (sgn‘𝐴)) | ||
Theorem | sgnsub 32411 | Subtraction of a number of opposite sign. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → (sgn‘(𝐴 − 𝐵)) = (sgn‘𝐴)) | ||
Theorem | sgnnbi 32412 | Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0)) | ||
Theorem | sgnpbi 32413 | Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) | ||
Theorem | sgn0bi 32414 | Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
Theorem | sgnsgn 32415 | Signum is idempotent. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
⊢ (𝐴 ∈ ℝ* → (sgn‘(sgn‘𝐴)) = (sgn‘𝐴)) | ||
Theorem | sgnmulsgn 32416 | If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0)) | ||
Theorem | sgnmulsgp 32417 | If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵)))) | ||
Theorem | fzssfzo 32418 | Condition for an integer interval to be a subset of a half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁)) | ||
Theorem | gsumncl 32419* | Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ 𝐾 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) ∈ 𝐾) | ||
Theorem | gsumnunsn 32420* | Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ 𝐾 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶)) | ||
Theorem | ccatmulgnn0dir 32421 | Concatenation of words follow the rule mulgnn0dir 18648 (although applying mulgnn0dir 18648 would require 𝑆 to be a set). In this case 𝐴 is 〈“𝐾”〉 to the power 𝑀 in the free monoid. (Contributed by Thierry Arnoux, 5-Oct-2018.) |
⊢ 𝐴 = ((0..^𝑀) × {𝐾}) & ⊢ 𝐵 = ((0..^𝑁) × {𝐾}) & ⊢ 𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾}) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐵) = 𝐶) | ||
Theorem | ofcccat 32422 | Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.) |
⊢ (𝜑 → 𝐹 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐺 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐾 ∈ 𝑇) ⇒ ⊢ (𝜑 → ((𝐹 ++ 𝐺) ∘f/c 𝑅𝐾) = ((𝐹 ∘f/c 𝑅𝐾) ++ (𝐺 ∘f/c 𝑅𝐾))) | ||
Theorem | ofcs1 32423 | Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f/c 𝑅𝐵) = 〈“(𝐴𝑅𝐵)”〉) | ||
Theorem | ofcs2 32424 | Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 9-Oct-2018.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (〈“𝐴𝐵”〉 ∘f/c 𝑅𝐶) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐶)”〉) | ||
Theorem | plymul02 32425 | Product of a polynomial with the zero polynomial. (Contributed by Thierry Arnoux, 26-Sep-2018.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → (0𝑝 ∘f · 𝐹) = 0𝑝) | ||
Theorem | plymulx0 32426* | Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.) |
⊢ (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹 ∘f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) | ||
Theorem | plymulx 32427* | Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.) |
⊢ (𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹 ∘f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))))) | ||
Theorem | plyrecld 32428 | Closure of a polynomial with real coefficients. (Contributed by Thierry Arnoux, 18-Sep-2018.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘ℝ)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) | ||
Theorem | signsplypnf 32429* | The quotient of a polynomial 𝐹 by a monic monomial of same degree 𝐺 converges to the highest coefficient of 𝐹. (Contributed by Thierry Arnoux, 18-Sep-2018.) |
⊢ 𝐷 = (deg‘𝐹) & ⊢ 𝐶 = (coeff‘𝐹) & ⊢ 𝐵 = (𝐶‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥↑𝐷)) ⇒ ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ∘f / 𝐺) ⇝𝑟 𝐵) | ||
Theorem | signsply0 32430* | Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient 𝐴 and 𝐵 are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
⊢ 𝐷 = (deg‘𝐹) & ⊢ 𝐶 = (coeff‘𝐹) & ⊢ 𝐵 = (𝐶‘𝐷) & ⊢ 𝐴 = (𝐶‘0) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℝ)) & ⊢ (𝜑 → 𝐹 ≠ 0𝑝) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹‘𝑧) = 0) | ||
Theorem | signspval 32431* | The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) ⇒ ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) | ||
Theorem | signsw0glem 32432* | Neutral element property of ⨣. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) ⇒ ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) | ||
Theorem | signswbase 32433 | The base of 𝑊 is the unordered triple reprensenting the possible signs. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ {-1, 0, 1} = (Base‘𝑊) | ||
Theorem | signswplusg 32434* | The operation of 𝑊. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ ⨣ = (+g‘𝑊) | ||
Theorem | signsw0g 32435* | The neutral element of 𝑊. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ 0 = (0g‘𝑊) | ||
Theorem | signswmnd 32436* | 𝑊 is a monoid structure on {-1, 0, 1} which operation retains the right side, but skips zeroes. This will be used for skipping zeroes when counting sign changes. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ 𝑊 ∈ Mnd | ||
Theorem | signswrid 32437* | The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ (𝑋 ∈ {-1, 0, 1} → (𝑋 ⨣ 0) = 𝑋) | ||
Theorem | signswlid 32438* | The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 ≠ 0) → (𝑋 ⨣ 𝑌) = 𝑌) | ||
Theorem | signswn0 32439* | The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 ⨣ 𝑌) ≠ 0) | ||
Theorem | signswch 32440* | The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} ⇒ ⊢ ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 ⨣ 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)) | ||
Theorem | signslema 32441 | Computational part of ~? signwlemn . (Contributed by Thierry Arnoux, 29-Sep-2018.) |
⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺 − 𝐸))) & ⊢ (𝜑 → ((𝐻 − 𝐺) − (𝐹 − 𝐸)) ∈ {0, 2}) ⇒ ⊢ (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻 − 𝐹))) | ||
Theorem | signstfv 32442* | Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) | ||
Theorem | signstfval 32443* | Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) | ||
Theorem | signstcl 32444* | Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1}) | ||
Theorem | signstf 32445* | The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) | ||
Theorem | signstlen 32446* | Length of the zero skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝑇‘𝐹)) = (♯‘𝐹)) | ||
Theorem | signstf0 32447* | Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (𝐾 ∈ ℝ → (𝑇‘〈“𝐾”〉) = 〈“(sgn‘𝐾)”〉) | ||
Theorem | signstfvn 32448* | Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) = (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ⨣ (sgn‘𝐾))) | ||
Theorem | signsvtn0 32449* | If the last letter is nonzero, then this is the zero-skipping sign. (Contributed by Thierry Arnoux, 8-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ 𝑁 = (♯‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ≠ 0) → ((𝑇‘𝐹)‘(𝑁 − 1)) = (sgn‘(𝐹‘(𝑁 − 1)))) | ||
Theorem | signstfvp 32450* | Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) | ||
Theorem | signstfvneq0 32451* | In case the first letter is not zero, the zero skipping sign is never zero. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ≠ 0) | ||
Theorem | signstfvcl 32452* | Closure of the zero skipping sign in case the first letter is not zero. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 1}) | ||
Theorem | signstfvc 32453* | Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) | ||
Theorem | signstres 32454* | Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇‘𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁)))) | ||
Theorem | signstfveq0a 32455* | Lemma for signstfveq0 32456. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ 𝑁 = (♯‘𝐹) ⇒ ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ≥‘2)) | ||
Theorem | signstfveq0 32456* | In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 4-Nov-2022.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ 𝑁 = (♯‘𝐹) ⇒ ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘𝐹)‘(𝑁 − 1)) = ((𝑇‘𝐹)‘(𝑁 − 2))) | ||
Theorem | signsvvfval 32457* | The value of 𝑉, which represents the number of times the sign changes in a word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (𝐹 ∈ Word ℝ → (𝑉‘𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) | ||
Theorem | signsvvf 32458* | 𝑉 is a function. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ 𝑉:Word ℝ⟶ℕ0 | ||
Theorem | signsvf0 32459* | There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (𝑉‘∅) = 0 | ||
Theorem | signsvf1 32460* | In a single-letter word, which represents a constant polynomial, there is no change of sign. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (𝐾 ∈ ℝ → (𝑉‘〈“𝐾”〉) = 0) | ||
Theorem | signsvfn 32461* | Number of changes in a word compared to a shorter word. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“𝐾”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0))) | ||
Theorem | signsvtp 32462* | Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ (𝜑 → 𝐸 ∈ (Word ℝ ∖ {∅})) & ⊢ (𝜑 → (𝐸‘0) ≠ 0) & ⊢ (𝜑 → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑁 = (♯‘𝐸) & ⊢ 𝐵 = ((𝑇‘𝐸)‘(𝑁 − 1)) ⇒ ⊢ ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉‘𝐹) = (𝑉‘𝐸)) | ||
Theorem | signsvtn 32463* | Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ (𝜑 → 𝐸 ∈ (Word ℝ ∖ {∅})) & ⊢ (𝜑 → (𝐸‘0) ≠ 0) & ⊢ (𝜑 → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑁 = (♯‘𝐸) & ⊢ 𝐵 = ((𝑇‘𝐸)‘(𝑁 − 1)) ⇒ ⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉‘𝐹) − (𝑉‘𝐸)) = 1) | ||
Theorem | signsvfpn 32464* | Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ (𝜑 → 𝐸 ∈ (Word ℝ ∖ {∅})) & ⊢ (𝜑 → (𝐸‘0) ≠ 0) & ⊢ (𝜑 → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑁 = (♯‘𝐸) & ⊢ 𝐵 = (𝐸‘(𝑁 − 1)) ⇒ ⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉‘𝐹) = (𝑉‘𝐸)) | ||
Theorem | signsvfnn 32465* | Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ (𝜑 → 𝐸 ∈ (Word ℝ ∖ {∅})) & ⊢ (𝜑 → (𝐸‘0) ≠ 0) & ⊢ (𝜑 → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑁 = (♯‘𝐸) & ⊢ 𝐵 = (𝐸‘(𝑁 − 1)) ⇒ ⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉‘𝐹) − (𝑉‘𝐸)) = 1) | ||
Theorem | signlem0 32466* | Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) ⇒ ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) | ||
Theorem | signshf 32467* | 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) | ||
Theorem | signshwrd 32468* | 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶), is a word. (Contributed by Thierry Arnoux, 29-Sep-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻 ∈ Word ℝ) | ||
Theorem | signshlen 32469* | Length of 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶). (Contributed by Thierry Arnoux, 14-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1)) | ||
Theorem | signshnz 32470* | 𝐻 is not the empty word. (Contributed by Thierry Arnoux, 14-Oct-2018.) |
⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) & ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} & ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) & ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) & ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) ⇒ ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻 ≠ ∅) | ||
Theorem | efcld 32471 | Closure law for the exponential function, deduction version. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℂ) | ||
Theorem | iblidicc 32472* | The identity function is integrable on any closed interval. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ 𝐿1) | ||
Theorem | rpsqrtcn 32473 | Continuity of the real positive square root function. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ (√ ↾ ℝ+) ∈ (ℝ+–cn→ℝ+) | ||
Theorem | divsqrtid 32474 | A real number divided by its square root. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 / (√‘𝐴)) = (√‘𝐴)) | ||
Theorem | cxpcncf1 32475* | The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 25803. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) | ||
Theorem | efmul2picn 32476* | Multiplying by (i · (2 · π)) and taking the exponential preserves continuity. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (exp‘((i · (2 · π)) · 𝐵))) ∈ (𝐴–cn→ℂ)) | ||
Theorem | fct2relem 32477 | Lemma for ftc2re 32478. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ 𝐸 = (𝐶(,)𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) | ||
Theorem | ftc2re 32478* | The Fundamental Theorem of Calculus, part two, for functions continuous on 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ 𝐸 = (𝐶(,)𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹:𝐸⟶ℂ) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
Theorem | fdvposlt 32479* | Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ 𝐸 = (𝐶(,)𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) & ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) | ||
Theorem | fdvneggt 32480* | Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ 𝐸 = (𝐶(,)𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) & ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) < (𝐹‘𝐴)) | ||
Theorem | fdvposle 32481* | Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ 𝐸 = (𝐶(,)𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) & ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ ((ℝ D 𝐹)‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐹‘𝐵)) | ||
Theorem | fdvnegge 32482* | Functions with a nonpositive derivative, i.e., decreasing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ 𝐸 = (𝐶(,)𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) & ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ≤ 0) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ≤ (𝐹‘𝐴)) | ||
Theorem | prodfzo03 32483* | A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
⊢ (𝑘 = 0 → 𝐷 = 𝐴) & ⊢ (𝑘 = 1 → 𝐷 = 𝐵) & ⊢ (𝑘 = 2 → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | actfunsnf1o 32484* | The action 𝐹 of extending function from 𝐵 to 𝐶 with new values at point 𝐼 is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐴 ⊆ (𝐶 ↑m 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐼 ∈ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 ∪ {〈𝐼, 𝑘〉})) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐹:𝐴–1-1-onto→ran 𝐹) | ||
Theorem | actfunsnrndisj 32485* | The action 𝐹 of extending function from 𝐵 to 𝐶 with new values at point 𝐼 yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐴 ⊆ (𝐶 ↑m 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐼 ∈ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 ∪ {〈𝐼, 𝑘〉})) ⇒ ⊢ (𝜑 → Disj 𝑘 ∈ 𝐶 ran 𝐹) | ||
Theorem | itgexpif 32486* | The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
⊢ (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0)) | ||
Theorem | fsum2dsub 32487* | Lemma for breprexp 32513- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝑖 = (𝑘 − 𝑗) → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘-𝑗) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (((𝑀 + 𝑗) + 1)...(𝑀 + 𝑁))) → 𝐵 = 0) & ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0..^𝑗)) → 𝐵 = 0) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (0...𝑀)Σ𝑗 ∈ (1...𝑁)𝐴 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑗 ∈ (1...𝑁)𝐵) | ||
Syntax | crepr 32488 | Representations of a number as a sum of nonnegative integers. |
class repr | ||
Definition | df-repr 32489* | The representations of a nonnegative 𝑚 as the sum of 𝑠 nonnegative integers from a set 𝑏. Cf. Definition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) | ||
Theorem | reprval 32490* | Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) | ||
Theorem | repr0 32491 | There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅)) | ||
Theorem | reprf 32492 | Members of the representation of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴 as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) ⇒ ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) | ||
Theorem | reprsum 32493* | Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) ⇒ ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) | ||
Theorem | reprle 32494 | Upper bound to the terms in the representations of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) & ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) ⇒ ⊢ (𝜑 → (𝐶‘𝑋) ≤ 𝑀) | ||
Theorem | reprsuc 32495* | Express the representations recursively. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ 𝐹 = (𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏)) ↦ (𝑐 ∪ {〈𝑆, 𝑏〉})) ⇒ ⊢ (𝜑 → (𝐴(repr‘(𝑆 + 1))𝑀) = ∪ 𝑏 ∈ 𝐴 ran 𝐹) | ||
Theorem | reprfi 32496 | Bounded representations are finite sets. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) ∈ Fin) | ||
Theorem | reprss 32497 | Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) | ||
Theorem | reprinrn 32498* | Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐵))) | ||
Theorem | reprlt 32499 | There are no representations of 𝑀 with more than 𝑀 terms. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑆) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅) | ||
Theorem | hashreprin 32500* | Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) ⇒ ⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |