| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmresv | Structured version Visualization version GIF version | ||
| Description: The scalar restriction is a proper operator, so it can be used with ovprc1 7408. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| reldmresv | ⊢ Rel dom ↾v |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-resv 33272 | . 2 ⊢ ↾v = (𝑦 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑦)) ⊆ 𝑥, 𝑦, (𝑦 sSet 〈(Scalar‘ndx), ((Scalar‘𝑦) ↾s 𝑥)〉))) | |
| 2 | 1 | reldmmpo 7503 | 1 ⊢ Rel dom ↾v |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ⊆ wss 3911 ifcif 4484 〈cop 4591 dom cdm 5631 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 sSet csts 17109 ndxcnx 17139 Basecbs 17155 ↾s cress 17176 Scalarcsca 17199 ↾v cresv 33271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-oprab 7373 df-mpo 7374 df-resv 33272 |
| This theorem is referenced by: resvsca 33277 resvlem 33278 |
| Copyright terms: Public domain | W3C validator |