| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmresv | Structured version Visualization version GIF version | ||
| Description: The scalar restriction is a proper operator, so it can be used with ovprc1 7385. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| reldmresv | ⊢ Rel dom ↾v |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-resv 33292 | . 2 ⊢ ↾v = (𝑦 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑦)) ⊆ 𝑥, 𝑦, (𝑦 sSet 〈(Scalar‘ndx), ((Scalar‘𝑦) ↾s 𝑥)〉))) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom ↾v |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3897 ifcif 4472 〈cop 4579 dom cdm 5614 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 ↾v cresv 33291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7350 df-mpo 7351 df-resv 33292 |
| This theorem is referenced by: resvsca 33297 resvlem 33298 |
| Copyright terms: Public domain | W3C validator |