Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmresv Structured version   Visualization version   GIF version

Theorem reldmresv 33293
Description: The scalar restriction is a proper operator, so it can be used with ovprc1 7385. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
reldmresv Rel dom ↾v

Proof of Theorem reldmresv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-resv 33292 . 2 v = (𝑦 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑦)) ⊆ 𝑥, 𝑦, (𝑦 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑦) ↾s 𝑥)⟩)))
21reldmmpo 7480 1 Rel dom ↾v
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  wss 3897  ifcif 4472  cop 4579  dom cdm 5614  Rel wrel 5619  cfv 6481  (class class class)co 7346   sSet csts 17074  ndxcnx 17104  Basecbs 17120  s cress 17141  Scalarcsca 17164  v cresv 33291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-oprab 7350  df-mpo 7351  df-resv 33292
This theorem is referenced by:  resvsca  33297  resvlem  33298
  Copyright terms: Public domain W3C validator