Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmresv | Structured version Visualization version GIF version |
Description: The scalar restriction is a proper operator, so it can be used with ovprc1 7189. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
reldmresv | ⊢ Rel dom ↾v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-resv 31050 | . 2 ⊢ ↾v = (𝑦 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑦)) ⊆ 𝑥, 𝑦, (𝑦 sSet 〈(Scalar‘ndx), ((Scalar‘𝑦) ↾s 𝑥)〉))) | |
2 | 1 | reldmmpo 7280 | 1 ⊢ Rel dom ↾v |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3409 ⊆ wss 3858 ifcif 4420 〈cop 4528 dom cdm 5524 Rel wrel 5529 ‘cfv 6335 (class class class)co 7150 ndxcnx 16538 sSet csts 16539 Basecbs 16541 ↾s cress 16542 Scalarcsca 16626 ↾v cresv 31049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-xp 5530 df-rel 5531 df-dm 5534 df-oprab 7154 df-mpo 7155 df-resv 31050 |
This theorem is referenced by: resvsca 31055 resvlem 31056 |
Copyright terms: Public domain | W3C validator |