| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmresv | Structured version Visualization version GIF version | ||
| Description: The scalar restriction is a proper operator, so it can be used with ovprc1 7452. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| reldmresv | ⊢ Rel dom ↾v |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-resv 33291 | . 2 ⊢ ↾v = (𝑦 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑦)) ⊆ 𝑥, 𝑦, (𝑦 sSet 〈(Scalar‘ndx), ((Scalar‘𝑦) ↾s 𝑥)〉))) | |
| 2 | 1 | reldmmpo 7549 | 1 ⊢ Rel dom ↾v |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3463 ⊆ wss 3931 ifcif 4505 〈cop 4612 dom cdm 5665 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 sSet csts 17182 ndxcnx 17212 Basecbs 17229 ↾s cress 17252 Scalarcsca 17276 ↾v cresv 33290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-dm 5675 df-oprab 7417 df-mpo 7418 df-resv 33291 |
| This theorem is referenced by: resvsca 33296 resvlem 33297 |
| Copyright terms: Public domain | W3C validator |