Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmresv Structured version   Visualization version   GIF version

Theorem reldmresv 31051
 Description: The scalar restriction is a proper operator, so it can be used with ovprc1 7189. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
reldmresv Rel dom ↾v

Proof of Theorem reldmresv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-resv 31050 . 2 v = (𝑦 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑦)) ⊆ 𝑥, 𝑦, (𝑦 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑦) ↾s 𝑥)⟩)))
21reldmmpo 7280 1 Rel dom ↾v
 Colors of variables: wff setvar class Syntax hints:  Vcvv 3409   ⊆ wss 3858  ifcif 4420  ⟨cop 4528  dom cdm 5524  Rel wrel 5529  ‘cfv 6335  (class class class)co 7150  ndxcnx 16538   sSet csts 16539  Basecbs 16541   ↾s cress 16542  Scalarcsca 16626   ↾v cresv 31049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-xp 5530  df-rel 5531  df-dm 5534  df-oprab 7154  df-mpo 7155  df-resv 31050 This theorem is referenced by:  resvsca  31055  resvlem  31056
 Copyright terms: Public domain W3C validator