![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmresv | Structured version Visualization version GIF version |
Description: The scalar restriction is a proper operator, so it can be used with ovprc1 7451. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
reldmresv | ⊢ Rel dom ↾v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-resv 32706 | . 2 ⊢ ↾v = (𝑦 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑦)) ⊆ 𝑥, 𝑦, (𝑦 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑦) ↾s 𝑥)⟩))) | |
2 | 1 | reldmmpo 7546 | 1 ⊢ Rel dom ↾v |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3473 ⊆ wss 3949 ifcif 4529 ⟨cop 4635 dom cdm 5677 Rel wrel 5682 ‘cfv 6544 (class class class)co 7412 sSet csts 17101 ndxcnx 17131 Basecbs 17149 ↾s cress 17178 Scalarcsca 17205 ↾v cresv 32705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-dm 5687 df-oprab 7416 df-mpo 7417 df-resv 32706 |
This theorem is referenced by: resvsca 32711 resvlem 32712 resvlemOLD 32713 |
Copyright terms: Public domain | W3C validator |