Detailed syntax breakdown of Definition df-rhm
| Step | Hyp | Ref
| Expression |
| 1 | | crh 20469 |
. 2
class
RingHom |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | crg 20230 |
. . 3
class
Ring |
| 5 | | vv |
. . . 4
setvar 𝑣 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | | cbs 17247 |
. . . . 5
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . 4
class
(Base‘𝑟) |
| 9 | | vw |
. . . . 5
setvar 𝑤 |
| 10 | 3 | cv 1539 |
. . . . . 6
class 𝑠 |
| 11 | 10, 7 | cfv 6561 |
. . . . 5
class
(Base‘𝑠) |
| 12 | | cur 20178 |
. . . . . . . . . 10
class
1r |
| 13 | 6, 12 | cfv 6561 |
. . . . . . . . 9
class
(1r‘𝑟) |
| 14 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 15 | 14 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 16 | 13, 15 | cfv 6561 |
. . . . . . . 8
class (𝑓‘(1r‘𝑟)) |
| 17 | 10, 12 | cfv 6561 |
. . . . . . . 8
class
(1r‘𝑠) |
| 18 | 16, 17 | wceq 1540 |
. . . . . . 7
wff (𝑓‘(1r‘𝑟)) = (1r‘𝑠) |
| 19 | | vx |
. . . . . . . . . . . . . 14
setvar 𝑥 |
| 20 | 19 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑥 |
| 21 | | vy |
. . . . . . . . . . . . . 14
setvar 𝑦 |
| 22 | 21 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑦 |
| 23 | | cplusg 17297 |
. . . . . . . . . . . . . 14
class
+g |
| 24 | 6, 23 | cfv 6561 |
. . . . . . . . . . . . 13
class
(+g‘𝑟) |
| 25 | 20, 22, 24 | co 7431 |
. . . . . . . . . . . 12
class (𝑥(+g‘𝑟)𝑦) |
| 26 | 25, 15 | cfv 6561 |
. . . . . . . . . . 11
class (𝑓‘(𝑥(+g‘𝑟)𝑦)) |
| 27 | 20, 15 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑓‘𝑥) |
| 28 | 22, 15 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑓‘𝑦) |
| 29 | 10, 23 | cfv 6561 |
. . . . . . . . . . . 12
class
(+g‘𝑠) |
| 30 | 27, 28, 29 | co 7431 |
. . . . . . . . . . 11
class ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) |
| 31 | 26, 30 | wceq 1540 |
. . . . . . . . . 10
wff (𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) |
| 32 | | cmulr 17298 |
. . . . . . . . . . . . . 14
class
.r |
| 33 | 6, 32 | cfv 6561 |
. . . . . . . . . . . . 13
class
(.r‘𝑟) |
| 34 | 20, 22, 33 | co 7431 |
. . . . . . . . . . . 12
class (𝑥(.r‘𝑟)𝑦) |
| 35 | 34, 15 | cfv 6561 |
. . . . . . . . . . 11
class (𝑓‘(𝑥(.r‘𝑟)𝑦)) |
| 36 | 10, 32 | cfv 6561 |
. . . . . . . . . . . 12
class
(.r‘𝑠) |
| 37 | 27, 28, 36 | co 7431 |
. . . . . . . . . . 11
class ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) |
| 38 | 35, 37 | wceq 1540 |
. . . . . . . . . 10
wff (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) |
| 39 | 31, 38 | wa 395 |
. . . . . . . . 9
wff ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) |
| 40 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑣 |
| 41 | 39, 21, 40 | wral 3061 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) |
| 42 | 41, 19, 40 | wral 3061 |
. . . . . . 7
wff
∀𝑥 ∈
𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) |
| 43 | 18, 42 | wa 395 |
. . . . . 6
wff ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) |
| 44 | 9 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 45 | | cmap 8866 |
. . . . . . 7
class
↑m |
| 46 | 44, 40, 45 | co 7431 |
. . . . . 6
class (𝑤 ↑m 𝑣) |
| 47 | 43, 14, 46 | crab 3436 |
. . . . 5
class {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} |
| 48 | 9, 11, 47 | csb 3899 |
. . . 4
class
⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} |
| 49 | 5, 8, 48 | csb 3899 |
. . 3
class
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} |
| 50 | 2, 3, 4, 4, 49 | cmpo 7433 |
. 2
class (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
| 51 | 1, 50 | wceq 1540 |
1
wff RingHom =
(𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |