MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrhm2 Structured version   Visualization version   GIF version

Theorem dfrhm2 18989
Description: The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
dfrhm2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Distinct variable group:   𝑠,𝑟

Proof of Theorem dfrhm2
Dummy variables 𝑣 𝑤 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rnghom 18987 . 2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
2 ringgrp 18822 . . . . . . . 8 (𝑟 ∈ Ring → 𝑟 ∈ Grp)
3 ringgrp 18822 . . . . . . . 8 (𝑠 ∈ Ring → 𝑠 ∈ Grp)
4 eqid 2765 . . . . . . . . 9 (Base‘𝑟) = (Base‘𝑟)
5 eqid 2765 . . . . . . . . 9 (Base‘𝑠) = (Base‘𝑠)
6 eqid 2765 . . . . . . . . 9 (+g𝑟) = (+g𝑟)
7 eqid 2765 . . . . . . . . 9 (+g𝑠) = (+g𝑠)
84, 5, 6, 7isghm3 17928 . . . . . . . 8 ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
92, 3, 8syl2an 589 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
109abbi2dv 2885 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))})
11 df-rab 3064 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
12 fvex 6390 . . . . . . . . . 10 (Base‘𝑠) ∈ V
13 fvex 6390 . . . . . . . . . 10 (Base‘𝑟) ∈ V
1412, 13elmap 8091 . . . . . . . . 9 (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ↔ 𝑓:(Base‘𝑟)⟶(Base‘𝑠))
1514anbi1i 617 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))))
1615abbii 2882 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
1711, 16eqtri 2787 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
1810, 17syl6eqr 2817 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))})
19 eqid 2765 . . . . . . . . 9 (mulGrp‘𝑟) = (mulGrp‘𝑟)
2019ringmgp 18823 . . . . . . . 8 (𝑟 ∈ Ring → (mulGrp‘𝑟) ∈ Mnd)
21 eqid 2765 . . . . . . . . 9 (mulGrp‘𝑠) = (mulGrp‘𝑠)
2221ringmgp 18823 . . . . . . . 8 (𝑠 ∈ Ring → (mulGrp‘𝑠) ∈ Mnd)
2319, 4mgpbas 18765 . . . . . . . . . 10 (Base‘𝑟) = (Base‘(mulGrp‘𝑟))
2421, 5mgpbas 18765 . . . . . . . . . 10 (Base‘𝑠) = (Base‘(mulGrp‘𝑠))
25 eqid 2765 . . . . . . . . . . 11 (.r𝑟) = (.r𝑟)
2619, 25mgpplusg 18763 . . . . . . . . . 10 (.r𝑟) = (+g‘(mulGrp‘𝑟))
27 eqid 2765 . . . . . . . . . . 11 (.r𝑠) = (.r𝑠)
2821, 27mgpplusg 18763 . . . . . . . . . 10 (.r𝑠) = (+g‘(mulGrp‘𝑠))
29 eqid 2765 . . . . . . . . . . 11 (1r𝑟) = (1r𝑟)
3019, 29ringidval 18773 . . . . . . . . . 10 (1r𝑟) = (0g‘(mulGrp‘𝑟))
31 eqid 2765 . . . . . . . . . . 11 (1r𝑠) = (1r𝑠)
3221, 31ringidval 18773 . . . . . . . . . 10 (1r𝑠) = (0g‘(mulGrp‘𝑠))
3323, 24, 26, 28, 30, 32ismhm 17606 . . . . . . . . 9 (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
3433baib 531 . . . . . . . 8 (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
3520, 22, 34syl2an 589 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
3635abbi2dv 2885 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
37 df-rab 3064 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
3814anbi1i 617 . . . . . . . . 9 ((𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
39 3anass 1116 . . . . . . . . 9 ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
4038, 39bitr4i 269 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
4140abbii 2882 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
4237, 41eqtri 2787 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
4336, 42syl6eqr 2817 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
4418, 43ineq12d 3979 . . . 4 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}))
45 ancom 452 . . . . . . 7 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
46 r19.26-2 3212 . . . . . . . 8 (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))
4746anbi1i 617 . . . . . . 7 ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
48 anass 460 . . . . . . 7 (((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
4945, 47, 483bitri 288 . . . . . 6 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5049rabbii 3334 . . . . 5 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
51 oveq12 6853 . . . . . . . 8 ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤𝑚 𝑣) = ((Base‘𝑠) ↑𝑚 (Base‘𝑟)))
5251ancoms 450 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤𝑚 𝑣) = ((Base‘𝑠) ↑𝑚 (Base‘𝑟)))
53 raleq 3286 . . . . . . . . . 10 (𝑣 = (Base‘𝑟) → (∀𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
5453raleqbi1dv 3294 . . . . . . . . 9 (𝑣 = (Base‘𝑟) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
5554adantr 472 . . . . . . . 8 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
5655anbi2d 622 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))))
5752, 56rabeqbidv 3344 . . . . . 6 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
5813, 12, 57csbie2 3723 . . . . 5 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}
59 inrab 4065 . . . . 5 ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
6050, 58, 593eqtr4i 2797 . . . 4 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
6144, 60syl6reqr 2818 . . 3 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
6261mpt2eq3ia 6920 . 2 (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
631, 62eqtri 2787 1 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  {cab 2751  wral 3055  {crab 3059  csb 3693  cin 3733  wf 6066  cfv 6070  (class class class)co 6844  cmpt2 6846  𝑚 cmap 8062  Basecbs 16133  +gcplusg 16217  .rcmulr 16218  Mndcmnd 17563   MndHom cmhm 17602  Grpcgrp 17692   GrpHom cghm 17924  mulGrpcmgp 18759  1rcur 18771  Ringcrg 18817   RingHom crh 18984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-map 8064  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-2 11337  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-plusg 16230  df-0g 16371  df-mhm 17604  df-ghm 17925  df-mgp 18760  df-ur 18772  df-ring 18819  df-rnghom 18987
This theorem is referenced by:  rhmrcl1  18991  rhmrcl2  18992  isrhm  18993  zrhval  20132  rhmfn  42590  rhmval  42591  rhmsubclem1  42758  rhmsubcALTVlem1  42776
  Copyright terms: Public domain W3C validator