Step | Hyp | Ref
| Expression |
1 | | df-rnghom 19193 |
. 2
⊢ RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
2 | | ringgrp 19028 |
. . . . . . . 8
⊢ (𝑟 ∈ Ring → 𝑟 ∈ Grp) |
3 | | ringgrp 19028 |
. . . . . . . 8
⊢ (𝑠 ∈ Ring → 𝑠 ∈ Grp) |
4 | | eqid 2778 |
. . . . . . . . 9
⊢
(Base‘𝑟) =
(Base‘𝑟) |
5 | | eqid 2778 |
. . . . . . . . 9
⊢
(Base‘𝑠) =
(Base‘𝑠) |
6 | | eqid 2778 |
. . . . . . . . 9
⊢
(+g‘𝑟) = (+g‘𝑟) |
7 | | eqid 2778 |
. . . . . . . . 9
⊢
(+g‘𝑠) = (+g‘𝑠) |
8 | 4, 5, 6, 7 | isghm3 18133 |
. . . . . . . 8
⊢ ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) |
9 | 2, 3, 8 | syl2an 586 |
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) |
10 | 9 | abbi2dv 2902 |
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))}) |
11 | | df-rab 3097 |
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
12 | | fvex 6514 |
. . . . . . . . . 10
⊢
(Base‘𝑠)
∈ V |
13 | | fvex 6514 |
. . . . . . . . . 10
⊢
(Base‘𝑟)
∈ V |
14 | 12, 13 | elmap 8237 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ↔
𝑓:(Base‘𝑟)⟶(Base‘𝑠)) |
15 | 14 | anbi1i 614 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))) |
16 | 15 | abbii 2844 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
17 | 11, 16 | eqtri 2802 |
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
18 | 10, 17 | syl6eqr 2832 |
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))}) |
19 | | eqid 2778 |
. . . . . . . . 9
⊢
(mulGrp‘𝑟) =
(mulGrp‘𝑟) |
20 | 19 | ringmgp 19029 |
. . . . . . . 8
⊢ (𝑟 ∈ Ring →
(mulGrp‘𝑟) ∈
Mnd) |
21 | | eqid 2778 |
. . . . . . . . 9
⊢
(mulGrp‘𝑠) =
(mulGrp‘𝑠) |
22 | 21 | ringmgp 19029 |
. . . . . . . 8
⊢ (𝑠 ∈ Ring →
(mulGrp‘𝑠) ∈
Mnd) |
23 | 19, 4 | mgpbas 18971 |
. . . . . . . . . 10
⊢
(Base‘𝑟) =
(Base‘(mulGrp‘𝑟)) |
24 | 21, 5 | mgpbas 18971 |
. . . . . . . . . 10
⊢
(Base‘𝑠) =
(Base‘(mulGrp‘𝑠)) |
25 | | eqid 2778 |
. . . . . . . . . . 11
⊢
(.r‘𝑟) = (.r‘𝑟) |
26 | 19, 25 | mgpplusg 18969 |
. . . . . . . . . 10
⊢
(.r‘𝑟) = (+g‘(mulGrp‘𝑟)) |
27 | | eqid 2778 |
. . . . . . . . . . 11
⊢
(.r‘𝑠) = (.r‘𝑠) |
28 | 21, 27 | mgpplusg 18969 |
. . . . . . . . . 10
⊢
(.r‘𝑠) = (+g‘(mulGrp‘𝑠)) |
29 | | eqid 2778 |
. . . . . . . . . . 11
⊢
(1r‘𝑟) = (1r‘𝑟) |
30 | 19, 29 | ringidval 18979 |
. . . . . . . . . 10
⊢
(1r‘𝑟) = (0g‘(mulGrp‘𝑟)) |
31 | | eqid 2778 |
. . . . . . . . . . 11
⊢
(1r‘𝑠) = (1r‘𝑠) |
32 | 21, 31 | ringidval 18979 |
. . . . . . . . . 10
⊢
(1r‘𝑠) = (0g‘(mulGrp‘𝑠)) |
33 | 23, 24, 26, 28, 30, 32 | ismhm 17808 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧
(mulGrp‘𝑠) ∈
Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
34 | 33 | baib 528 |
. . . . . . . 8
⊢
(((mulGrp‘𝑟)
∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
35 | 20, 22, 34 | syl2an 586 |
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
36 | 35 | abbi2dv 2902 |
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
37 | | df-rab 3097 |
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
38 | 14 | anbi1i 614 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
39 | | 3anass 1076 |
. . . . . . . . 9
⊢ ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
40 | 38, 39 | bitr4i 270 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
41 | 40 | abbii 2844 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} |
42 | 37, 41 | eqtri 2802 |
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} |
43 | 36, 42 | syl6eqr 2832 |
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
44 | 18, 43 | ineq12d 4079 |
. . . 4
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))})) |
45 | | ancom 453 |
. . . . . . 7
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
46 | | r19.26-2 3121 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) |
47 | 46 | anbi1i 614 |
. . . . . . 7
⊢
((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
48 | | anass 461 |
. . . . . . 7
⊢
(((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
49 | 45, 47, 48 | 3bitri 289 |
. . . . . 6
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
50 | 49 | rabbii 3399 |
. . . . 5
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
51 | | oveq12 6987 |
. . . . . . . 8
⊢ ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤 ↑𝑚 𝑣) = ((Base‘𝑠) ↑𝑚
(Base‘𝑟))) |
52 | 51 | ancoms 451 |
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤 ↑𝑚 𝑣) = ((Base‘𝑠) ↑𝑚
(Base‘𝑟))) |
53 | | raleq 3345 |
. . . . . . . . . 10
⊢ (𝑣 = (Base‘𝑟) → (∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
54 | 53 | raleqbi1dv 3343 |
. . . . . . . . 9
⊢ (𝑣 = (Base‘𝑟) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
55 | 54 | adantr 473 |
. . . . . . . 8
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
56 | 55 | anbi2d 619 |
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))))) |
57 | 52, 56 | rabeqbidv 3408 |
. . . . . 6
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
58 | 13, 12, 57 | csbie2 3820 |
. . . . 5
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} |
59 | | inrab 4164 |
. . . . 5
⊢ ({𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
60 | 50, 58, 59 | 3eqtr4i 2812 |
. . . 4
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
61 | 44, 60 | syl6reqr 2833 |
. . 3
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |
62 | 61 | mpoeq3ia 7052 |
. 2
⊢ (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |
63 | 1, 62 | eqtri 2802 |
1
⊢ RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |