MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrhm2 Structured version   Visualization version   GIF version

Theorem dfrhm2 20390
Description: The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
dfrhm2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Distinct variable group:   𝑠,𝑟

Proof of Theorem dfrhm2
Dummy variables 𝑣 𝑤 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rhm 20388 . 2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
2 ancom 460 . . . . . . 7 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
3 r19.26-2 3119 . . . . . . . 8 (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))
43anbi1i 624 . . . . . . 7 ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
5 anass 468 . . . . . . 7 (((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
62, 4, 53bitri 297 . . . . . 6 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
76rabbii 3414 . . . . 5 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
8 fvex 6874 . . . . . 6 (Base‘𝑟) ∈ V
9 fvex 6874 . . . . . 6 (Base‘𝑠) ∈ V
10 oveq12 7399 . . . . . . . 8 ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤m 𝑣) = ((Base‘𝑠) ↑m (Base‘𝑟)))
1110ancoms 458 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤m 𝑣) = ((Base‘𝑠) ↑m (Base‘𝑟)))
12 raleq 3298 . . . . . . . . . 10 (𝑣 = (Base‘𝑟) → (∀𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
1312raleqbi1dv 3313 . . . . . . . . 9 (𝑣 = (Base‘𝑟) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
1413adantr 480 . . . . . . . 8 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
1514anbi2d 630 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))))
1611, 15rabeqbidv 3427 . . . . . 6 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
178, 9, 16csbie2 3904 . . . . 5 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}
18 inrab 4282 . . . . 5 ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
197, 17, 183eqtr4i 2763 . . . 4 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
20 ringgrp 20154 . . . . . . . 8 (𝑟 ∈ Ring → 𝑟 ∈ Grp)
21 ringgrp 20154 . . . . . . . 8 (𝑠 ∈ Ring → 𝑠 ∈ Grp)
22 eqid 2730 . . . . . . . . 9 (Base‘𝑟) = (Base‘𝑟)
23 eqid 2730 . . . . . . . . 9 (Base‘𝑠) = (Base‘𝑠)
24 eqid 2730 . . . . . . . . 9 (+g𝑟) = (+g𝑟)
25 eqid 2730 . . . . . . . . 9 (+g𝑠) = (+g𝑠)
2622, 23, 24, 25isghm3 19156 . . . . . . . 8 ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
2720, 21, 26syl2an 596 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
2827eqabdv 2862 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))})
29 df-rab 3409 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
309, 8elmap 8847 . . . . . . . . 9 (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ↔ 𝑓:(Base‘𝑟)⟶(Base‘𝑠))
3130anbi1i 624 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))))
3231abbii 2797 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
3329, 32eqtri 2753 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
3428, 33eqtr4di 2783 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))})
35 eqid 2730 . . . . . . . . 9 (mulGrp‘𝑟) = (mulGrp‘𝑟)
3635ringmgp 20155 . . . . . . . 8 (𝑟 ∈ Ring → (mulGrp‘𝑟) ∈ Mnd)
37 eqid 2730 . . . . . . . . 9 (mulGrp‘𝑠) = (mulGrp‘𝑠)
3837ringmgp 20155 . . . . . . . 8 (𝑠 ∈ Ring → (mulGrp‘𝑠) ∈ Mnd)
3935, 22mgpbas 20061 . . . . . . . . . 10 (Base‘𝑟) = (Base‘(mulGrp‘𝑟))
4037, 23mgpbas 20061 . . . . . . . . . 10 (Base‘𝑠) = (Base‘(mulGrp‘𝑠))
41 eqid 2730 . . . . . . . . . . 11 (.r𝑟) = (.r𝑟)
4235, 41mgpplusg 20060 . . . . . . . . . 10 (.r𝑟) = (+g‘(mulGrp‘𝑟))
43 eqid 2730 . . . . . . . . . . 11 (.r𝑠) = (.r𝑠)
4437, 43mgpplusg 20060 . . . . . . . . . 10 (.r𝑠) = (+g‘(mulGrp‘𝑠))
45 eqid 2730 . . . . . . . . . . 11 (1r𝑟) = (1r𝑟)
4635, 45ringidval 20099 . . . . . . . . . 10 (1r𝑟) = (0g‘(mulGrp‘𝑟))
47 eqid 2730 . . . . . . . . . . 11 (1r𝑠) = (1r𝑠)
4837, 47ringidval 20099 . . . . . . . . . 10 (1r𝑠) = (0g‘(mulGrp‘𝑠))
4939, 40, 42, 44, 46, 48ismhm 18719 . . . . . . . . 9 (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5049baib 535 . . . . . . . 8 (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5136, 38, 50syl2an 596 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5251eqabdv 2862 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
53 df-rab 3409 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
5430anbi1i 624 . . . . . . . . 9 ((𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
55 3anass 1094 . . . . . . . . 9 ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5654, 55bitr4i 278 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
5756abbii 2797 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
5853, 57eqtri 2753 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
5952, 58eqtr4di 2783 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
6034, 59ineq12d 4187 . . . 4 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}))
6119, 60eqtr4id 2784 . . 3 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
6261mpoeq3ia 7470 . 2 (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
631, 62eqtri 2753 1 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  {crab 3408  csb 3865  cin 3916  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Mndcmnd 18668   MndHom cmhm 18715  Grpcgrp 18872   GrpHom cghm 19151  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149   RingHom crh 20385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mhm 18717  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-rhm 20388
This theorem is referenced by:  rhmrcl1  20392  rhmrcl2  20393  isrhm  20394  rhmfn  20415  rhmval  20416  rhmsubclem1  20601  zrhval  21424  rhmsubcALTVlem1  48273
  Copyright terms: Public domain W3C validator