Step | Hyp | Ref
| Expression |
1 | | df-rnghom 20008 |
. 2
⊢ RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
2 | | ancom 462 |
. . . . . . 7
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
3 | | r19.26-2 3132 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) |
4 | 3 | anbi1i 625 |
. . . . . . 7
⊢
((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
5 | | anass 470 |
. . . . . . 7
⊢
(((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
6 | 2, 4, 5 | 3bitri 297 |
. . . . . 6
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
7 | 6 | rabbii 3415 |
. . . . 5
⊢ {𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∣
((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
8 | | fvex 6817 |
. . . . . 6
⊢
(Base‘𝑟)
∈ V |
9 | | fvex 6817 |
. . . . . 6
⊢
(Base‘𝑠)
∈ V |
10 | | oveq12 7316 |
. . . . . . . 8
⊢ ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤 ↑m 𝑣) = ((Base‘𝑠) ↑m (Base‘𝑟))) |
11 | 10 | ancoms 460 |
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤 ↑m 𝑣) = ((Base‘𝑠) ↑m (Base‘𝑟))) |
12 | | raleq 3361 |
. . . . . . . . . 10
⊢ (𝑣 = (Base‘𝑟) → (∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
13 | 12 | raleqbi1dv 3359 |
. . . . . . . . 9
⊢ (𝑣 = (Base‘𝑟) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
14 | 13 | adantr 482 |
. . . . . . . 8
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
15 | 14 | anbi2d 630 |
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))))) |
16 | 11, 15 | rabeqbidv 3427 |
. . . . . 6
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
17 | 8, 9, 16 | csbie2 3879 |
. . . . 5
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} |
18 | | inrab 4246 |
. . . . 5
⊢ ({𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
19 | 7, 17, 18 | 3eqtr4i 2774 |
. . . 4
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
20 | | ringgrp 19837 |
. . . . . . . 8
⊢ (𝑟 ∈ Ring → 𝑟 ∈ Grp) |
21 | | ringgrp 19837 |
. . . . . . . 8
⊢ (𝑠 ∈ Ring → 𝑠 ∈ Grp) |
22 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑟) =
(Base‘𝑟) |
23 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑠) =
(Base‘𝑠) |
24 | | eqid 2736 |
. . . . . . . . 9
⊢
(+g‘𝑟) = (+g‘𝑟) |
25 | | eqid 2736 |
. . . . . . . . 9
⊢
(+g‘𝑠) = (+g‘𝑠) |
26 | 22, 23, 24, 25 | isghm3 18884 |
. . . . . . . 8
⊢ ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) |
27 | 20, 21, 26 | syl2an 597 |
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) |
28 | 27 | abbi2dv 2875 |
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))}) |
29 | | df-rab 3306 |
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
30 | 9, 8 | elmap 8690 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ↔
𝑓:(Base‘𝑟)⟶(Base‘𝑠)) |
31 | 30 | anbi1i 625 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))) |
32 | 31 | abbii 2806 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
33 | 29, 32 | eqtri 2764 |
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
34 | 28, 33 | eqtr4di 2794 |
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))}) |
35 | | eqid 2736 |
. . . . . . . . 9
⊢
(mulGrp‘𝑟) =
(mulGrp‘𝑟) |
36 | 35 | ringmgp 19838 |
. . . . . . . 8
⊢ (𝑟 ∈ Ring →
(mulGrp‘𝑟) ∈
Mnd) |
37 | | eqid 2736 |
. . . . . . . . 9
⊢
(mulGrp‘𝑠) =
(mulGrp‘𝑠) |
38 | 37 | ringmgp 19838 |
. . . . . . . 8
⊢ (𝑠 ∈ Ring →
(mulGrp‘𝑠) ∈
Mnd) |
39 | 35, 22 | mgpbas 19775 |
. . . . . . . . . 10
⊢
(Base‘𝑟) =
(Base‘(mulGrp‘𝑟)) |
40 | 37, 23 | mgpbas 19775 |
. . . . . . . . . 10
⊢
(Base‘𝑠) =
(Base‘(mulGrp‘𝑠)) |
41 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(.r‘𝑟) = (.r‘𝑟) |
42 | 35, 41 | mgpplusg 19773 |
. . . . . . . . . 10
⊢
(.r‘𝑟) = (+g‘(mulGrp‘𝑟)) |
43 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(.r‘𝑠) = (.r‘𝑠) |
44 | 37, 43 | mgpplusg 19773 |
. . . . . . . . . 10
⊢
(.r‘𝑠) = (+g‘(mulGrp‘𝑠)) |
45 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(1r‘𝑟) = (1r‘𝑟) |
46 | 35, 45 | ringidval 19788 |
. . . . . . . . . 10
⊢
(1r‘𝑟) = (0g‘(mulGrp‘𝑟)) |
47 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(1r‘𝑠) = (1r‘𝑠) |
48 | 37, 47 | ringidval 19788 |
. . . . . . . . . 10
⊢
(1r‘𝑠) = (0g‘(mulGrp‘𝑠)) |
49 | 39, 40, 42, 44, 46, 48 | ismhm 18481 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧
(mulGrp‘𝑠) ∈
Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
50 | 49 | baib 537 |
. . . . . . . 8
⊢
(((mulGrp‘𝑟)
∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
51 | 36, 38, 50 | syl2an 597 |
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
52 | 51 | abbi2dv 2875 |
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
53 | | df-rab 3306 |
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
54 | 30 | anbi1i 625 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
55 | | 3anass 1095 |
. . . . . . . . 9
⊢ ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
56 | 54, 55 | bitr4i 278 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
57 | 56 | abbii 2806 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} |
58 | 53, 57 | eqtri 2764 |
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} |
59 | 52, 58 | eqtr4di 2794 |
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑m
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
60 | 34, 59 | ineq12d 4153 |
. . . 4
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))})) |
61 | 19, 60 | eqtr4id 2795 |
. . 3
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |
62 | 61 | mpoeq3ia 7385 |
. 2
⊢ (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |
63 | 1, 62 | eqtri 2764 |
1
⊢ RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |