MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrhm2 Structured version   Visualization version   GIF version

Theorem dfrhm2 20200
Description: The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
dfrhm2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Distinct variable group:   𝑠,𝑟

Proof of Theorem dfrhm2
Dummy variables 𝑣 𝑤 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rnghom 20198 . 2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
2 ancom 461 . . . . . . 7 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
3 r19.26-2 3137 . . . . . . . 8 (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))
43anbi1i 624 . . . . . . 7 ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
5 anass 469 . . . . . . 7 (((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
62, 4, 53bitri 296 . . . . . 6 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
76rabbii 3435 . . . . 5 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
8 fvex 6888 . . . . . 6 (Base‘𝑟) ∈ V
9 fvex 6888 . . . . . 6 (Base‘𝑠) ∈ V
10 oveq12 7399 . . . . . . . 8 ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤m 𝑣) = ((Base‘𝑠) ↑m (Base‘𝑟)))
1110ancoms 459 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤m 𝑣) = ((Base‘𝑠) ↑m (Base‘𝑟)))
12 raleq 3321 . . . . . . . . . 10 (𝑣 = (Base‘𝑟) → (∀𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
1312raleqbi1dv 3332 . . . . . . . . 9 (𝑣 = (Base‘𝑟) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
1413adantr 481 . . . . . . . 8 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
1514anbi2d 629 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))))
1611, 15rabeqbidv 3446 . . . . . 6 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
178, 9, 16csbie2 3928 . . . . 5 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}
18 inrab 4299 . . . . 5 ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
197, 17, 183eqtr4i 2769 . . . 4 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
20 ringgrp 20016 . . . . . . . 8 (𝑟 ∈ Ring → 𝑟 ∈ Grp)
21 ringgrp 20016 . . . . . . . 8 (𝑠 ∈ Ring → 𝑠 ∈ Grp)
22 eqid 2731 . . . . . . . . 9 (Base‘𝑟) = (Base‘𝑟)
23 eqid 2731 . . . . . . . . 9 (Base‘𝑠) = (Base‘𝑠)
24 eqid 2731 . . . . . . . . 9 (+g𝑟) = (+g𝑟)
25 eqid 2731 . . . . . . . . 9 (+g𝑠) = (+g𝑠)
2622, 23, 24, 25isghm3 19056 . . . . . . . 8 ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
2720, 21, 26syl2an 596 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
2827eqabdv 2866 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))})
29 df-rab 3430 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
309, 8elmap 8845 . . . . . . . . 9 (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ↔ 𝑓:(Base‘𝑟)⟶(Base‘𝑠))
3130anbi1i 624 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))))
3231abbii 2801 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
3329, 32eqtri 2759 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
3428, 33eqtr4di 2789 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))})
35 eqid 2731 . . . . . . . . 9 (mulGrp‘𝑟) = (mulGrp‘𝑟)
3635ringmgp 20017 . . . . . . . 8 (𝑟 ∈ Ring → (mulGrp‘𝑟) ∈ Mnd)
37 eqid 2731 . . . . . . . . 9 (mulGrp‘𝑠) = (mulGrp‘𝑠)
3837ringmgp 20017 . . . . . . . 8 (𝑠 ∈ Ring → (mulGrp‘𝑠) ∈ Mnd)
3935, 22mgpbas 19949 . . . . . . . . . 10 (Base‘𝑟) = (Base‘(mulGrp‘𝑟))
4037, 23mgpbas 19949 . . . . . . . . . 10 (Base‘𝑠) = (Base‘(mulGrp‘𝑠))
41 eqid 2731 . . . . . . . . . . 11 (.r𝑟) = (.r𝑟)
4235, 41mgpplusg 19947 . . . . . . . . . 10 (.r𝑟) = (+g‘(mulGrp‘𝑟))
43 eqid 2731 . . . . . . . . . . 11 (.r𝑠) = (.r𝑠)
4437, 43mgpplusg 19947 . . . . . . . . . 10 (.r𝑠) = (+g‘(mulGrp‘𝑠))
45 eqid 2731 . . . . . . . . . . 11 (1r𝑟) = (1r𝑟)
4635, 45ringidval 19962 . . . . . . . . . 10 (1r𝑟) = (0g‘(mulGrp‘𝑟))
47 eqid 2731 . . . . . . . . . . 11 (1r𝑠) = (1r𝑠)
4837, 47ringidval 19962 . . . . . . . . . 10 (1r𝑠) = (0g‘(mulGrp‘𝑠))
4939, 40, 42, 44, 46, 48ismhm 18646 . . . . . . . . 9 (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5049baib 536 . . . . . . . 8 (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5136, 38, 50syl2an 596 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5251eqabdv 2866 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
53 df-rab 3430 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
5430anbi1i 624 . . . . . . . . 9 ((𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
55 3anass 1095 . . . . . . . . 9 ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5654, 55bitr4i 277 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
5756abbii 2801 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
5853, 57eqtri 2759 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
5952, 58eqtr4di 2789 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
6034, 59ineq12d 4206 . . . 4 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑m (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}))
6119, 60eqtr4id 2790 . . 3 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
6261mpoeq3ia 7468 . 2 (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
631, 62eqtri 2759 1 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2708  wral 3060  {crab 3429  csb 3886  cin 3940  wf 6525  cfv 6529  (class class class)co 7390  cmpo 7392  m cmap 8800  Basecbs 17123  +gcplusg 17176  .rcmulr 17177  Mndcmnd 18599   MndHom cmhm 18642  Grpcgrp 18791   GrpHom cghm 19052  mulGrpcmgp 19943  1rcur 19960  Ringcrg 20011   RingHom crh 20195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7705  ax-cnex 11145  ax-resscn 11146  ax-1cn 11147  ax-icn 11148  ax-addcl 11149  ax-addrcl 11150  ax-mulcl 11151  ax-mulrcl 11152  ax-mulcom 11153  ax-addass 11154  ax-mulass 11155  ax-distr 11156  ax-i2m1 11157  ax-1ne0 11158  ax-1rid 11159  ax-rnegex 11160  ax-rrecex 11161  ax-cnre 11162  ax-pre-lttri 11163  ax-pre-lttrn 11164  ax-pre-ltadd 11165  ax-pre-mulgt0 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3430  df-v 3472  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4520  df-pw 4595  df-sn 4620  df-pr 4622  df-op 4626  df-uni 4899  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6286  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6531  df-fn 6532  df-f 6533  df-f1 6534  df-fo 6535  df-f1o 6536  df-fv 6537  df-riota 7346  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7836  df-2nd 7955  df-frecs 8245  df-wrecs 8276  df-recs 8350  df-rdg 8389  df-er 8683  df-map 8802  df-en 8920  df-dom 8921  df-sdom 8922  df-pnf 11229  df-mnf 11230  df-xr 11231  df-ltxr 11232  df-le 11233  df-sub 11425  df-neg 11426  df-nn 12192  df-2 12254  df-sets 17076  df-slot 17094  df-ndx 17106  df-base 17124  df-plusg 17189  df-0g 17366  df-mhm 18644  df-ghm 19053  df-mgp 19944  df-ur 19961  df-ring 20013  df-rnghom 20198
This theorem is referenced by:  rhmrcl1  20202  rhmrcl2  20203  isrhm  20204  zrhval  20985  rhmfn  46450  rhmval  46451  rhmsubclem1  46618  rhmsubcALTVlem1  46636
  Copyright terms: Public domain W3C validator