MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrhm2 Structured version   Visualization version   GIF version

Theorem dfrhm2 19195
Description: The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
dfrhm2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Distinct variable group:   𝑠,𝑟

Proof of Theorem dfrhm2
Dummy variables 𝑣 𝑤 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rnghom 19193 . 2 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
2 ringgrp 19028 . . . . . . . 8 (𝑟 ∈ Ring → 𝑟 ∈ Grp)
3 ringgrp 19028 . . . . . . . 8 (𝑠 ∈ Ring → 𝑠 ∈ Grp)
4 eqid 2778 . . . . . . . . 9 (Base‘𝑟) = (Base‘𝑟)
5 eqid 2778 . . . . . . . . 9 (Base‘𝑠) = (Base‘𝑠)
6 eqid 2778 . . . . . . . . 9 (+g𝑟) = (+g𝑟)
7 eqid 2778 . . . . . . . . 9 (+g𝑠) = (+g𝑠)
84, 5, 6, 7isghm3 18133 . . . . . . . 8 ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
92, 3, 8syl2an 586 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))))
109abbi2dv 2902 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))})
11 df-rab 3097 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
12 fvex 6514 . . . . . . . . . 10 (Base‘𝑠) ∈ V
13 fvex 6514 . . . . . . . . . 10 (Base‘𝑟) ∈ V
1412, 13elmap 8237 . . . . . . . . 9 (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ↔ 𝑓:(Base‘𝑟)⟶(Base‘𝑠))
1514anbi1i 614 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))))
1615abbii 2844 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
1711, 16eqtri 2802 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)))}
1810, 17syl6eqr 2832 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))})
19 eqid 2778 . . . . . . . . 9 (mulGrp‘𝑟) = (mulGrp‘𝑟)
2019ringmgp 19029 . . . . . . . 8 (𝑟 ∈ Ring → (mulGrp‘𝑟) ∈ Mnd)
21 eqid 2778 . . . . . . . . 9 (mulGrp‘𝑠) = (mulGrp‘𝑠)
2221ringmgp 19029 . . . . . . . 8 (𝑠 ∈ Ring → (mulGrp‘𝑠) ∈ Mnd)
2319, 4mgpbas 18971 . . . . . . . . . 10 (Base‘𝑟) = (Base‘(mulGrp‘𝑟))
2421, 5mgpbas 18971 . . . . . . . . . 10 (Base‘𝑠) = (Base‘(mulGrp‘𝑠))
25 eqid 2778 . . . . . . . . . . 11 (.r𝑟) = (.r𝑟)
2619, 25mgpplusg 18969 . . . . . . . . . 10 (.r𝑟) = (+g‘(mulGrp‘𝑟))
27 eqid 2778 . . . . . . . . . . 11 (.r𝑠) = (.r𝑠)
2821, 27mgpplusg 18969 . . . . . . . . . 10 (.r𝑠) = (+g‘(mulGrp‘𝑠))
29 eqid 2778 . . . . . . . . . . 11 (1r𝑟) = (1r𝑟)
3019, 29ringidval 18979 . . . . . . . . . 10 (1r𝑟) = (0g‘(mulGrp‘𝑟))
31 eqid 2778 . . . . . . . . . . 11 (1r𝑠) = (1r𝑠)
3221, 31ringidval 18979 . . . . . . . . . 10 (1r𝑠) = (0g‘(mulGrp‘𝑠))
3323, 24, 26, 28, 30, 32ismhm 17808 . . . . . . . . 9 (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
3433baib 528 . . . . . . . 8 (((mulGrp‘𝑟) ∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
3520, 22, 34syl2an 586 . . . . . . 7 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
3635abbi2dv 2902 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
37 df-rab 3097 . . . . . . 7 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
3814anbi1i 614 . . . . . . . . 9 ((𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
39 3anass 1076 . . . . . . . . 9 ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
4038, 39bitr4i 270 . . . . . . . 8 ((𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
4140abbii 2844 . . . . . . 7 {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
4237, 41eqtri 2802 . . . . . 6 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}
4336, 42syl6eqr 2832 . . . . 5 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
4418, 43ineq12d 4079 . . . 4 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}))
45 ancom 453 . . . . . . 7 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
46 r19.26-2 3121 . . . . . . . 8 (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))
4746anbi1i 614 . . . . . . 7 ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))
48 anass 461 . . . . . . 7 (((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
4945, 47, 483bitri 289 . . . . . 6 (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))))
5049rabbii 3399 . . . . 5 {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
51 oveq12 6987 . . . . . . . 8 ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤𝑚 𝑣) = ((Base‘𝑠) ↑𝑚 (Base‘𝑟)))
5251ancoms 451 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤𝑚 𝑣) = ((Base‘𝑠) ↑𝑚 (Base‘𝑟)))
53 raleq 3345 . . . . . . . . . 10 (𝑣 = (Base‘𝑟) → (∀𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
5453raleqbi1dv 3343 . . . . . . . . 9 (𝑣 = (Base‘𝑟) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
5554adantr 473 . . . . . . . 8 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))))
5655anbi2d 619 . . . . . . 7 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))) ↔ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))))
5752, 56rabeqbidv 3408 . . . . . 6 ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
5813, 12, 57csbie2 3820 . . . . 5 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}
59 inrab 4164 . . . . 5 ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠)))}
6050, 58, 593eqtr4i 2812 . . . 4 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)) ∧ (𝑓‘(1r𝑟)) = (1r𝑠))})
6144, 60syl6reqr 2833 . . 3 ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
6261mpoeq3ia 7052 . 2 (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
631, 62eqtri 2802 1 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  {cab 2758  wral 3088  {crab 3092  csb 3788  cin 3830  wf 6186  cfv 6190  (class class class)co 6978  cmpo 6980  𝑚 cmap 8208  Basecbs 16342  +gcplusg 16424  .rcmulr 16425  Mndcmnd 17765   MndHom cmhm 17804  Grpcgrp 17894   GrpHom cghm 18129  mulGrpcmgp 18965  1rcur 18977  Ringcrg 19023   RingHom crh 19190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-plusg 16437  df-0g 16574  df-mhm 17806  df-ghm 18130  df-mgp 18966  df-ur 18978  df-ring 19025  df-rnghom 19193
This theorem is referenced by:  rhmrcl1  19197  rhmrcl2  19198  isrhm  19199  zrhval  20360  rhmfn  43554  rhmval  43555  rhmsubclem1  43722  rhmsubcALTVlem1  43740
  Copyright terms: Public domain W3C validator