Detailed syntax breakdown of Definition df-rng0
Step | Hyp | Ref
| Expression |
1 | | crng 45432 |
. 2
class
Rng |
2 | | vf |
. . . . . . 7
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑓 |
4 | | cmgp 19720 |
. . . . . 6
class
mulGrp |
5 | 3, 4 | cfv 6433 |
. . . . 5
class
(mulGrp‘𝑓) |
6 | | csgrp 18374 |
. . . . 5
class
Smgrp |
7 | 5, 6 | wcel 2106 |
. . . 4
wff
(mulGrp‘𝑓)
∈ Smgrp |
8 | | vx |
. . . . . . . . . . . . . 14
setvar 𝑥 |
9 | 8 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑥 |
10 | | vy |
. . . . . . . . . . . . . . 15
setvar 𝑦 |
11 | 10 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑦 |
12 | | vz |
. . . . . . . . . . . . . . 15
setvar 𝑧 |
13 | 12 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑧 |
14 | | vp |
. . . . . . . . . . . . . . 15
setvar 𝑝 |
15 | 14 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑝 |
16 | 11, 13, 15 | co 7275 |
. . . . . . . . . . . . 13
class (𝑦𝑝𝑧) |
17 | | vt |
. . . . . . . . . . . . . 14
setvar 𝑡 |
18 | 17 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑡 |
19 | 9, 16, 18 | co 7275 |
. . . . . . . . . . . 12
class (𝑥𝑡(𝑦𝑝𝑧)) |
20 | 9, 11, 18 | co 7275 |
. . . . . . . . . . . . 13
class (𝑥𝑡𝑦) |
21 | 9, 13, 18 | co 7275 |
. . . . . . . . . . . . 13
class (𝑥𝑡𝑧) |
22 | 20, 21, 15 | co 7275 |
. . . . . . . . . . . 12
class ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) |
23 | 19, 22 | wceq 1539 |
. . . . . . . . . . 11
wff (𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) |
24 | 9, 11, 15 | co 7275 |
. . . . . . . . . . . . 13
class (𝑥𝑝𝑦) |
25 | 24, 13, 18 | co 7275 |
. . . . . . . . . . . 12
class ((𝑥𝑝𝑦)𝑡𝑧) |
26 | 11, 13, 18 | co 7275 |
. . . . . . . . . . . . 13
class (𝑦𝑡𝑧) |
27 | 21, 26, 15 | co 7275 |
. . . . . . . . . . . 12
class ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) |
28 | 25, 27 | wceq 1539 |
. . . . . . . . . . 11
wff ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) |
29 | 23, 28 | wa 396 |
. . . . . . . . . 10
wff ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) |
30 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
31 | 30 | cv 1538 |
. . . . . . . . . 10
class 𝑏 |
32 | 29, 12, 31 | wral 3064 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) |
33 | 32, 10, 31 | wral 3064 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) |
34 | 33, 8, 31 | wral 3064 |
. . . . . . 7
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) |
35 | | cmulr 16963 |
. . . . . . . 8
class
.r |
36 | 3, 35 | cfv 6433 |
. . . . . . 7
class
(.r‘𝑓) |
37 | 34, 17, 36 | wsbc 3716 |
. . . . . 6
wff
[(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) |
38 | | cplusg 16962 |
. . . . . . 7
class
+g |
39 | 3, 38 | cfv 6433 |
. . . . . 6
class
(+g‘𝑓) |
40 | 37, 14, 39 | wsbc 3716 |
. . . . 5
wff
[(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) |
41 | | cbs 16912 |
. . . . . 6
class
Base |
42 | 3, 41 | cfv 6433 |
. . . . 5
class
(Base‘𝑓) |
43 | 40, 30, 42 | wsbc 3716 |
. . . 4
wff
[(Base‘𝑓) / 𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) |
44 | 7, 43 | wa 396 |
. . 3
wff
((mulGrp‘𝑓)
∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)))) |
45 | | cabl 19387 |
. . 3
class
Abel |
46 | 44, 2, 45 | crab 3068 |
. 2
class {𝑓 ∈ Abel ∣
((mulGrp‘𝑓) ∈
Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
47 | 1, 46 | wceq 1539 |
1
wff Rng =
{𝑓 ∈ Abel ∣
((mulGrp‘𝑓) ∈
Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |