| Metamath
Proof Explorer Theorem List (p. 455 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fzoct 45401 | A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝑁..^𝑀) ≼ ω | ||
| Theorem | frexr 45402 | A function taking real values, is a function taking extended real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | ||
| Theorem | nnrecrp 45403 | The reciprocal of a positive natural number is a positive real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ+) | ||
| Theorem | reclt0d 45404 | The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) < 0) | ||
| Theorem | lt0neg1dd 45405 | If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → 0 < -𝐴) | ||
| Theorem | infxrcld 45406 | The infimum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | xrralrecnnge 45407* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)) | ||
| Theorem | reclt0 45408 | The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0)) | ||
| Theorem | ltmulneg 45409 | Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 0) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) | ||
| Theorem | allbutfi 45410* | For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 45115 and eliuniin2 45136 (here, the precondition can be dropped; see eliuniincex 45125). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ⇒ ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) | ||
| Theorem | ltdiv23neg 45411 | Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | ||
| Theorem | xreqnltd 45412 | A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 < 𝐵) | ||
| Theorem | mnfnre2 45413 | Minus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ¬ -∞ ∈ ℝ | ||
| Theorem | zssxr 45414 | The integers are a subset of the extended reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ℤ ⊆ ℝ* | ||
| Theorem | fisupclrnmpt 45415* | A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | supxrunb3 45416* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
| Theorem | elfzod 45417 | Membership in a half-open integer interval. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 < 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑀..^𝑁)) | ||
| Theorem | fimaxre4 45418* | A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | ||
| Theorem | ren0 45419 | The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ℝ ≠ ∅ | ||
| Theorem | eluzelz2 45420 | A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) | ||
| Theorem | resabs2d 45421 | Absorption law for restriction. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) | ||
| Theorem | uzid2 45422 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | supxrleubrnmpt 45423* | The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | uzssre2 45424 | An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℝ | ||
| Theorem | uzssd 45425 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
| Theorem | eluzd 45426 | Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑍) | ||
| Theorem | infxrlbrnmpt2 45427* | A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐷) | ||
| Theorem | xrre4 45428 | An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞))) | ||
| Theorem | uz0 45429 | The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | ||
| Theorem | eluzelz2d 45430 | A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℤ) | ||
| Theorem | infleinf2 45431* | If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) | ||
| Theorem | unb2ltle 45432* | "Unbounded below" expressed with < and with ≤. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | ||
| Theorem | uzidd2 45433 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑍) | ||
| Theorem | uzssd2 45434 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) | ||
| Theorem | rexabslelem 45435* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) | ||
| Theorem | rexabsle 45436* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) | ||
| Theorem | allbutfiinf 45437* | Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝑁 = inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵)) | ||
| Theorem | supxrrernmpt 45438* | The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | ||
| Theorem | suprleubrnmpt 45439* | The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | infrnmptle 45440* | An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) | ||
| Theorem | infxrunb3 45441* | The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞)) | ||
| Theorem | uzn0d 45442 | The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑍 ≠ ∅) | ||
| Theorem | uzssd3 45443 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) | ||
| Theorem | rexabsle2 45444* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵))) | ||
| Theorem | infxrunb3rnmpt 45445* | The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) | ||
| Theorem | supxrre3rnmpt 45446* | The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) | ||
| Theorem | uzublem 45447* | A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝑋 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) & ⊢ 𝑋 = if(𝑊 ≤ 𝑌, 𝑌, 𝑊) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝐾)𝐵 ≤ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) | ||
| Theorem | uzub 45448* | A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) | ||
| Theorem | ssrexr 45449 | A subset of the reals is a subset of the extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | ||
| Theorem | supxrmnf2 45450 | Removing minus infinity from a set does not affect its supremum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrcli 45451 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 ⊆ ℝ* ⇒ ⊢ sup(𝐴, ℝ*, < ) ∈ ℝ* | ||
| Theorem | uzid3 45452 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑁)) | ||
| Theorem | infxrlesupxr 45453 | The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr 45466. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )) | ||
| Theorem | xnegeqd 45454 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) | ||
| Theorem | xnegrecl 45455 | The extended real negative of a real number is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ) | ||
| Theorem | xnegnegi 45456 | Extended real version of negneg 11403. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 ∈ ℝ* ⇒ ⊢ -𝑒-𝑒𝐴 = 𝐴 | ||
| Theorem | xnegeqi 45457 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ -𝑒𝐴 = -𝑒𝐵 | ||
| Theorem | nfxnegd 45458 | Deduction version of nfxneg 45478. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) | ||
| Theorem | xnegnegd 45459 | Extended real version of negnegd 11455. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -𝑒-𝑒𝐴 = 𝐴) | ||
| Theorem | uzred 45460 | An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | xnegcli 45461 | Closure of extended real negative. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 ∈ ℝ* ⇒ ⊢ -𝑒𝐴 ∈ ℝ* | ||
| Theorem | supminfrnmpt 45462* | The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) | ||
| Theorem | infxrpnf 45463 | Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) | ||
| Theorem | infxrrnmptcl 45464* | The infimum of an arbitrary indexed set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ∈ ℝ*) | ||
| Theorem | leneg2d 45465 | Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ -𝐵 ↔ 𝐵 ≤ -𝐴)) | ||
| Theorem | supxrltinfxr 45466 | The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ sup(∅, ℝ*, < ) < inf(∅, ℝ*, < ) | ||
| Theorem | max1d 45467 | A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | supxrleubrnmptf 45468 | The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | nleltd 45469 | 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 < 𝐵) | ||
| Theorem | zxrd 45470 | An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
| Theorem | infxrgelbrnmpt 45471* | The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐶 ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝐶 ≤ 𝐵)) | ||
| Theorem | rphalfltd 45472 | Half of a positive real is less than the original number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 / 2) < 𝐴) | ||
| Theorem | uzssz2 45473 | An upper set of integers is a subset of all integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℤ | ||
| Theorem | leneg3d 45474 | Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) | ||
| Theorem | max2d 45475 | A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | uzn0bi 45476 | The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ((ℤ≥‘𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ) | ||
| Theorem | xnegrecl2 45477 | If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | ||
| Theorem | nfxneg 45478 | Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝑒𝐴 | ||
| Theorem | uzxrd 45479 | An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
| Theorem | infxrpnf2 45480 | Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) | ||
| Theorem | supminfxr 45481* | The extended real suprema of a set of reals is the extended real negative of the extended real infima of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}, ℝ*, < )) | ||
| Theorem | infrpgernmpt 45482* | The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) +𝑒 𝐶)) | ||
| Theorem | xnegre 45483 | An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ)) | ||
| Theorem | xnegrecl2d 45484 | If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → -𝑒𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | uzxr 45485 | An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ∈ (ℤ≥‘𝑀) → 𝐴 ∈ ℝ*) | ||
| Theorem | supminfxr2 45486* | The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, < )) | ||
| Theorem | xnegred 45487 | An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ)) | ||
| Theorem | supminfxrrnmpt 45488* | The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵), ℝ*, < )) | ||
| Theorem | min1d 45489 | The minimum of two numbers is less than or equal to the first. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
| Theorem | min2d 45490 | The minimum of two numbers is less than or equal to the second. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
| Theorem | xrnpnfmnf 45491 | An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ +∞) ⇒ ⊢ (𝜑 → 𝐴 = -∞) | ||
| Theorem | uzsscn 45492 | An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (ℤ≥‘𝑀) ⊆ ℂ | ||
| Theorem | absimnre 45493 | The absolute value of the imaginary part of a non-real, complex number, is strictly positive. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+) | ||
| Theorem | uzsscn2 45494 | An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℂ | ||
| Theorem | xrtgcntopre 45495 | The standard topologies on the extended reals and on the complex numbers, coincide when restricted to the reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ ((ordTop‘ ≤ ) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
| Theorem | absimlere 45496 | The absolute value of the imaginary part of a complex number is a lower bound of the distance to any real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) | ||
| Theorem | rpssxr 45497 | The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ ℝ+ ⊆ ℝ* | ||
| Theorem | monoordxrv 45498* | Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
| Theorem | monoordxr 45499* | Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
| Theorem | monoord2xrv 45500* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |