| Metamath
Proof Explorer Theorem List (p. 455 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | uzid2 45401 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | supxrleubrnmpt 45402* | The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | uzssre2 45403 | An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℝ | ||
| Theorem | uzssd 45404 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
| Theorem | eluzd 45405 | Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑍) | ||
| Theorem | infxrlbrnmpt2 45406* | A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐷) | ||
| Theorem | xrre4 45407 | An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞))) | ||
| Theorem | uz0 45408 | The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | ||
| Theorem | eluzelz2d 45409 | A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℤ) | ||
| Theorem | infleinf2 45410* | If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) | ||
| Theorem | unb2ltle 45411* | "Unbounded below" expressed with < and with ≤. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | ||
| Theorem | uzidd2 45412 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑍) | ||
| Theorem | uzssd2 45413 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) | ||
| Theorem | rexabslelem 45414* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) | ||
| Theorem | rexabsle 45415* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) | ||
| Theorem | allbutfiinf 45416* | Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝑁 = inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵)) | ||
| Theorem | supxrrernmpt 45417* | The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | ||
| Theorem | suprleubrnmpt 45418* | The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | infrnmptle 45419* | An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) | ||
| Theorem | infxrunb3 45420* | The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞)) | ||
| Theorem | uzn0d 45421 | The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑍 ≠ ∅) | ||
| Theorem | uzssd3 45422 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) | ||
| Theorem | rexabsle2 45423* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵))) | ||
| Theorem | infxrunb3rnmpt 45424* | The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) | ||
| Theorem | supxrre3rnmpt 45425* | The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) | ||
| Theorem | uzublem 45426* | A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝑋 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) & ⊢ 𝑋 = if(𝑊 ≤ 𝑌, 𝑌, 𝑊) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝐾)𝐵 ≤ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) | ||
| Theorem | uzub 45427* | A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝐵 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) | ||
| Theorem | ssrexr 45428 | A subset of the reals is a subset of the extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | ||
| Theorem | supxrmnf2 45429 | Removing minus infinity from a set does not affect its supremum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrcli 45430 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 ⊆ ℝ* ⇒ ⊢ sup(𝐴, ℝ*, < ) ∈ ℝ* | ||
| Theorem | uzid3 45431 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑁)) | ||
| Theorem | infxrlesupxr 45432 | The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr 45445. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )) | ||
| Theorem | xnegeqd 45433 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) | ||
| Theorem | xnegrecl 45434 | The extended real negative of a real number is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ) | ||
| Theorem | xnegnegi 45435 | Extended real version of negneg 11472. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 ∈ ℝ* ⇒ ⊢ -𝑒-𝑒𝐴 = 𝐴 | ||
| Theorem | xnegeqi 45436 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ -𝑒𝐴 = -𝑒𝐵 | ||
| Theorem | nfxnegd 45437 | Deduction version of nfxneg 45457. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) | ||
| Theorem | xnegnegd 45438 | Extended real version of negnegd 11524. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -𝑒-𝑒𝐴 = 𝐴) | ||
| Theorem | uzred 45439 | An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | xnegcli 45440 | Closure of extended real negative. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐴 ∈ ℝ* ⇒ ⊢ -𝑒𝐴 ∈ ℝ* | ||
| Theorem | supminfrnmpt 45441* | The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) | ||
| Theorem | infxrpnf 45442 | Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) | ||
| Theorem | infxrrnmptcl 45443* | The infimum of an arbitrary indexed set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ∈ ℝ*) | ||
| Theorem | leneg2d 45444 | Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ -𝐵 ↔ 𝐵 ≤ -𝐴)) | ||
| Theorem | supxrltinfxr 45445 | The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ sup(∅, ℝ*, < ) < inf(∅, ℝ*, < ) | ||
| Theorem | max1d 45446 | A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | supxrleubrnmptf 45447 | The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | nleltd 45448 | 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 < 𝐵) | ||
| Theorem | zxrd 45449 | An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
| Theorem | infxrgelbrnmpt 45450* | The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐶 ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝐶 ≤ 𝐵)) | ||
| Theorem | rphalfltd 45451 | Half of a positive real is less than the original number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 / 2) < 𝐴) | ||
| Theorem | uzssz2 45452 | An upper set of integers is a subset of all integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℤ | ||
| Theorem | leneg3d 45453 | Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) | ||
| Theorem | max2d 45454 | A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | uzn0bi 45455 | The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ((ℤ≥‘𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ) | ||
| Theorem | xnegrecl2 45456 | If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | ||
| Theorem | nfxneg 45457 | Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝑒𝐴 | ||
| Theorem | uzxrd 45458 | An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
| Theorem | infxrpnf2 45459 | Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) | ||
| Theorem | supminfxr 45460* | The extended real suprema of a set of reals is the extended real negative of the extended real infima of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}, ℝ*, < )) | ||
| Theorem | infrpgernmpt 45461* | The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) +𝑒 𝐶)) | ||
| Theorem | xnegre 45462 | An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ)) | ||
| Theorem | xnegrecl2d 45463 | If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → -𝑒𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | uzxr 45464 | An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐴 ∈ (ℤ≥‘𝑀) → 𝐴 ∈ ℝ*) | ||
| Theorem | supminfxr2 45465* | The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, < )) | ||
| Theorem | xnegred 45466 | An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ)) | ||
| Theorem | supminfxrrnmpt 45467* | The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵), ℝ*, < )) | ||
| Theorem | min1d 45468 | The minimum of two numbers is less than or equal to the first. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
| Theorem | min2d 45469 | The minimum of two numbers is less than or equal to the second. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
| Theorem | xrnpnfmnf 45470 | An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ +∞) ⇒ ⊢ (𝜑 → 𝐴 = -∞) | ||
| Theorem | uzsscn 45471 | An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (ℤ≥‘𝑀) ⊆ ℂ | ||
| Theorem | absimnre 45472 | The absolute value of the imaginary part of a non-real, complex number, is strictly positive. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+) | ||
| Theorem | uzsscn2 45473 | An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℂ | ||
| Theorem | xrtgcntopre 45474 | The standard topologies on the extended reals and on the complex numbers, coincide when restricted to the reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ ((ordTop‘ ≤ ) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
| Theorem | absimlere 45475 | The absolute value of the imaginary part of a complex number is a lower bound of the distance to any real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) | ||
| Theorem | rpssxr 45476 | The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ ℝ+ ⊆ ℝ* | ||
| Theorem | monoordxrv 45477* | Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
| Theorem | monoordxr 45478* | Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
| Theorem | monoord2xrv 45479* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
| Theorem | monoord2xr 45480* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
| Theorem | xrpnf 45481* | An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ 𝐴)) | ||
| Theorem | xlenegcon1 45482 | Extended real version of lenegcon1 11682. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ 𝐴)) | ||
| Theorem | xlenegcon2 45483 | Extended real version of lenegcon2 11683. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ -𝑒𝐵 ↔ 𝐵 ≤ -𝑒𝐴)) | ||
| Theorem | pimxrneun 45484 | The preimage of a set of extended reals that does not contain a value 𝐶 is the union of the preimage of the elements smaller than 𝐶 and the preimage of the subset of elements larger than 𝐶. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝐶} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∪ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵})) | ||
| Theorem | caucvgbf 45485* | A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | ||
| Theorem | cvgcau 45486* | A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) | ||
| Theorem | cvgcaule 45487* | A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ≤ 𝑋)) | ||
| Theorem | rexanuz2nf 45488* | A simple counterexample related to theorem rexanuz2 15316, demonstrating the necessity of its disjoint variable constraints. Here, 𝑗 appears free in 𝜑, showing that without these constraints, rexanuz2 15316 and similar theorems would not hold (see rexanre 15313 and rexanuz 15312). (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ 𝑍 = ℕ0 & ⊢ (𝜑 ↔ (𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) & ⊢ (𝜓 ↔ 0 < 𝑘) ⇒ ⊢ ¬ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | gtnelioc 45489 | A real number larger than the upper bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵)) | ||
| Theorem | ioossioc 45490 | An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵) | ||
| Theorem | ioondisj2 45491 | A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅) | ||
| Theorem | ioondisj1 45492 | A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷)) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅) | ||
| Theorem | ioogtlb 45493 | An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) | ||
| Theorem | evthiccabs 45494* | Extreme Value Theorem on y closed interval, for the absolute value of y continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) | ||
| Theorem | ltnelicc 45495 | A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 < 𝐴) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) | ||
| Theorem | eliood 45496 | Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) | ||
| Theorem | iooabslt 45497 | An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) | ||
| Theorem | gtnelicc 45498 | A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) | ||
| Theorem | iooinlbub 45499 | An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ | ||
| Theorem | iocgtlb 45500 | An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |