Home | Metamath
Proof Explorer Theorem List (p. 455 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
In this subsection, "internal binary operations" obeying different laws are defined. | ||
Syntax | cintop 45401 | Extend class notation with class of internal (binary) operations for a set. |
class intOp | ||
Syntax | cclintop 45402 | Extend class notation with class of closed operations for a set. |
class clIntOp | ||
Syntax | cassintop 45403 | Extend class notation with class of associative operations for a set. |
class assIntOp | ||
Definition | df-intop 45404* | Function mapping a set to the class of all internal (binary) operations for this set. (Contributed by AV, 20-Jan-2020.) |
⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) | ||
Definition | df-clintop 45405 | Function mapping a set to the class of all closed (internal binary) operations for this set, see definition in section 1.2 of [Hall] p. 2, definition in section I.1 of [Bruck] p. 1, or definition 1 in [BourbakiAlg1] p. 1, where it is called "a law of composition". (Contributed by AV, 20-Jan-2020.) |
⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) | ||
Definition | df-assintop 45406* | Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in [BourbakiAlg1] p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020.) |
⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | ||
Theorem | intopval 45407 | The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) | ||
Theorem | intop 45408 | An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ (𝑀 intOp 𝑁) → ⚬ :(𝑀 × 𝑀)⟶𝑁) | ||
Theorem | clintopval 45409 | The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | ||
Theorem | assintopval 45410* | The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) | ||
Theorem | assintopmap 45411* | The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) | ||
Theorem | isclintop 45412 | The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) | ||
Theorem | clintop 45413 | A closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | ||
Theorem | assintop 45414 | An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) | ||
Theorem | isassintop 45415* | The predicate "is an associative (closed internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) | ||
Theorem | clintopcllaw 45416 | The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) | ||
Theorem | assintopcllaw 45417 | The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀) | ||
Theorem | assintopasslaw 45418 | The associative low holds for a associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ assLaw 𝑀) | ||
Theorem | assintopass 45419* | An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) | ||
Syntax | cmgm2 45420 | Extend class notation with class of all magmas. |
class MgmALT | ||
Syntax | ccmgm2 45421 | Extend class notation with class of all commutative magmas. |
class CMgmALT | ||
Syntax | csgrp2 45422 | Extend class notation with class of all semigroups. |
class SGrpALT | ||
Syntax | ccsgrp2 45423 | Extend class notation with class of all commutative semigroups. |
class CSGrpALT | ||
Definition | df-mgm2 45424 | A magma is a set equipped with a closed operation. Definition 1 of [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by AV, 6-Jan-2020.) |
⊢ MgmALT = {𝑚 ∣ (+g‘𝑚) clLaw (Base‘𝑚)} | ||
Definition | df-cmgm2 45425 | A commutative magma is a magma with a commutative operation. Definition 8 of [BourbakiAlg1] p. 7. (Contributed by AV, 20-Jan-2020.) |
⊢ CMgmALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) comLaw (Base‘𝑚)} | ||
Definition | df-sgrp2 45426 | A semigroup is a magma with an associative operation. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4, or of a semigroup in section 1.3 of [Hall] p. 7. (Contributed by AV, 6-Jan-2020.) |
⊢ SGrpALT = {𝑔 ∈ MgmALT ∣ (+g‘𝑔) assLaw (Base‘𝑔)} | ||
Definition | df-csgrp2 45427 | A commutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020.) |
⊢ CSGrpALT = {𝑔 ∈ SGrpALT ∣ (+g‘𝑔) comLaw (Base‘𝑔)} | ||
Theorem | ismgmALT 45428 | The predicate "is a magma". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ MgmALT ↔ ⚬ clLaw 𝐵)) | ||
Theorem | iscmgmALT 45429 | The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) | ||
Theorem | issgrpALT 45430 | The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) | ||
Theorem | iscsgrpALT 45431 | The predicate "is a commutative semigroup". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ CSGrpALT ↔ (𝑀 ∈ SGrpALT ∧ ⚬ comLaw 𝐵)) | ||
Theorem | mgm2mgm 45432 | Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.) |
⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) | ||
Theorem | sgrp2sgrp 45433 | Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.) |
⊢ (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp) | ||
Theorem | idfusubc0 45434* | The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
⊢ 𝑆 = (𝐶 ↾cat 𝐽) & ⊢ 𝐼 = (idfunc‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) | ||
Theorem | idfusubc 45435* | The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
⊢ 𝑆 = (𝐶 ↾cat 𝐽) & ⊢ 𝐼 = (idfunc‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) | ||
Theorem | inclfusubc 45436* | The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020.) |
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ 𝑆 = (𝐶 ↾cat 𝐽) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) | ||
Theorem | lmod0rng 45437 | If the scalar ring of a module is the zero ring, the module is the zero module, i.e. the base set of the module is the singleton consisting of the identity element only. (Contributed by AV, 17-Apr-2019.) |
⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing) → (Base‘𝑀) = {(0g‘𝑀)}) | ||
Theorem | nzrneg1ne0 45438 | The additive inverse of the 1 in a nonzero ring is not zero ( -1 =/= 0 ). (Contributed by AV, 29-Apr-2019.) |
⊢ (𝑅 ∈ NzRing → ((invg‘𝑅)‘(1r‘𝑅)) ≠ (0g‘𝑅)) | ||
Theorem | 0ringdif 45439 | A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) | ||
Theorem | 0ringbas 45440 | The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 𝐵 = { 0 }) | ||
Theorem | 0ring1eq0 45441 | In a zero ring, a ring which is not a nonzero ring, the unit equals the zero element. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 1 = 0 ) | ||
Theorem | nrhmzr 45442 | There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
⊢ ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅) | ||
According to Wikipedia, "... in abstract algebra, a rng (or pseudo-ring or non-unital ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 6-Jan-2020). | ||
Syntax | crng 45443 | Extend class notation with class of all non-unital rings. |
class Rng | ||
Definition | df-rng0 45444* | Define class of all (non-unital) rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.) |
⊢ Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} | ||
Theorem | isrng 45445* | The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) | ||
Theorem | rngabl 45446 | A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | ||
Theorem | rngmgp 45447 | A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) | ||
Theorem | ringrng 45448 | A unital ring is a (non-unital) ring. (Contributed by AV, 6-Jan-2020.) |
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | ||
Theorem | ringssrng 45449 | The unital rings are (non-unital) rings. (Contributed by AV, 20-Mar-2020.) |
⊢ Ring ⊆ Rng | ||
Theorem | isringrng 45450* | The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) | ||
Theorem | rngdir 45451 | Distributive law for the multiplication operation of a nonunital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) | ||
Theorem | rngcl 45452 | Closure of the multiplication operation of a nonunital ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | rnglz 45453 | The zero of a nonunital ring is a left-absorbing element. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) | ||
Syntax | crngh 45454 | non-unital ring homomorphisms. |
class RngHomo | ||
Syntax | crngs 45455 | non-unital ring isomorphisms. |
class RngIsom | ||
Definition | df-rnghomo 45456* | Define the set of non-unital ring homomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
⊢ RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | ||
Definition | df-rngisom 45457* | Define the set of non-unital ring isomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
⊢ RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHomo 𝑟)}) | ||
Theorem | rnghmrcl 45458 | Reverse closure of a non-unital ring homomorphism. (Contributed by AV, 22-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) | ||
Theorem | rnghmfn 45459 | The mapping of two non-unital rings to the non-unital ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
⊢ RngHomo Fn (Rng × Rng) | ||
Theorem | rnghmval 45460* | The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) | ||
Theorem | isrnghm 45461* | A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | ||
Theorem | isrnghmmul 45462 | A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) | ||
Theorem | rnghmmgmhm 45463 | A non-unital ring homomorphism is a homomorphism of multiplicative magmas. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑀 MgmHom 𝑁)) | ||
Theorem | rnghmval2 45464 | The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020.) |
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))) | ||
Theorem | isrngisom 45465 | An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHomo 𝑅)))) | ||
Theorem | rngimrcl 45466 | Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
Theorem | rnghmghm 45467 | A non-unital ring homomorphism is an additive group homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
Theorem | rnghmf 45468 | A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵⟶𝐶) | ||
Theorem | rnghmmul 45469 | A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
Theorem | isrnghm2d 45470* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | isrnghmd 45471* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | rnghmf1o 45472 | A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RngHomo 𝑅))) | ||
Theorem | isrngim 45473 | An isomorphism of non-unital rings is a bijective homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) | ||
Theorem | rngimf1o 45474 | An isomorphism of non-unital rings is a bijection. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | rngimrnghm 45475 | An isomorphism of non-unital rings is a homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | rnghmco 45476 | The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RngHomo 𝑈)) | ||
Theorem | idrnghm 45477 | The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ (𝑅 RngHomo 𝑅)) | ||
Theorem | c0mgm 45478* | The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇)) | ||
Theorem | c0mhm 45479* | The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) | ||
Theorem | c0ghm 45480* | The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | c0rhm 45481* | The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇)) | ||
Theorem | c0rnghm 45482* | The constant mapping to zero is a nonunital ring homomorphism from any nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇)) | ||
Theorem | c0snmgmhm 45483* | The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) | ||
Theorem | c0snmhm 45484* | The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) | ||
Theorem | c0snghm 45485* | The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆)) | ||
Theorem | zrrnghm 45486* | The constant mapping to zero is a nonunital ring homomorphism from the zero ring to any nonunital ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHomo 𝑆)) | ||
Theorem | rhmfn 45487 | The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
⊢ RingHom Fn (Ring × Ring) | ||
Theorem | rhmval 45488 | The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.) |
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | ||
Theorem | rhmisrnghm 45489 | Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | lidldomn1 45490* | If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 }) ∧ 𝐼 ∈ 𝑈) → (∀𝑥 ∈ 𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )) | ||
Theorem | lidlssbas 45491 | The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) | ||
Theorem | lidlbas 45492 | A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) | ||
Theorem | lidlabl 45493 | A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Abel) | ||
Theorem | lidlmmgm 45494 | The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) | ||
Theorem | lidlmsgrp 45495 | The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Smgrp) | ||
Theorem | lidlrng 45496 | A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) | ||
Theorem | zlidlring 45497 | The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) | ||
Theorem | uzlidlring 45498 | Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) | ||
Theorem | lidldomnnring 45499 | A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) | ||
Theorem | 0even 45500* | 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 0 ∈ 𝐸 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |