Detailed syntax breakdown of Definition df-sate
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csate 35343 | . 2
class 
Sat∈ | 
| 2 |  | vm | . . 3
setvar 𝑚 | 
| 3 |  | vu | . . 3
setvar 𝑢 | 
| 4 |  | cvv 3480 | . . 3
class
V | 
| 5 | 3 | cv 1539 | . . . 4
class 𝑢 | 
| 6 |  | com 7887 | . . . . 5
class
ω | 
| 7 | 2 | cv 1539 | . . . . . 6
class 𝑚 | 
| 8 |  | cep 5583 | . . . . . . 7
class 
E | 
| 9 | 7, 7 | cxp 5683 | . . . . . . 7
class (𝑚 × 𝑚) | 
| 10 | 8, 9 | cin 3950 | . . . . . 6
class ( E ∩
(𝑚 × 𝑚)) | 
| 11 |  | csat 35341 | . . . . . 6
class 
Sat | 
| 12 | 7, 10, 11 | co 7431 | . . . . 5
class (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) | 
| 13 | 6, 12 | cfv 6561 | . . . 4
class ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) | 
| 14 | 5, 13 | cfv 6561 | . . 3
class (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) | 
| 15 | 2, 3, 4, 4, 14 | cmpo 7433 | . 2
class (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | 
| 16 | 1, 15 | wceq 1540 | 1
wff 
Sat∈ = (𝑚
∈ V, 𝑢 ∈ V
↦ (((𝑚 Sat ( E ∩
(𝑚 × 𝑚)))‘ω)‘𝑢)) |