Detailed syntax breakdown of Definition df-sate
Step | Hyp | Ref
| Expression |
1 | | csate 33300 |
. 2
class
Sat∈ |
2 | | vm |
. . 3
setvar 𝑚 |
3 | | vu |
. . 3
setvar 𝑢 |
4 | | cvv 3432 |
. . 3
class
V |
5 | 3 | cv 1538 |
. . . 4
class 𝑢 |
6 | | com 7712 |
. . . . 5
class
ω |
7 | 2 | cv 1538 |
. . . . . 6
class 𝑚 |
8 | | cep 5494 |
. . . . . . 7
class
E |
9 | 7, 7 | cxp 5587 |
. . . . . . 7
class (𝑚 × 𝑚) |
10 | 8, 9 | cin 3886 |
. . . . . 6
class ( E ∩
(𝑚 × 𝑚)) |
11 | | csat 33298 |
. . . . . 6
class
Sat |
12 | 7, 10, 11 | co 7275 |
. . . . 5
class (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) |
13 | 6, 12 | cfv 6433 |
. . . 4
class ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) |
14 | 5, 13 | cfv 6433 |
. . 3
class (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) |
15 | 2, 3, 4, 4, 14 | cmpo 7277 |
. 2
class (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) |
16 | 1, 15 | wceq 1539 |
1
wff
Sat∈ = (𝑚
∈ V, 𝑢 ∈ V
↦ (((𝑚 Sat ( E ∩
(𝑚 × 𝑚)))‘ω)‘𝑢)) |