Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > satefv | Structured version Visualization version GIF version |
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
Ref | Expression |
---|---|
satefv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sate 33019 | . . 3 ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))) |
3 | id 22 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
4 | 3 | sqxpeqd 5583 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
5 | 4 | ineq2d 4127 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀))) |
6 | 3, 5 | oveq12d 7231 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))) |
7 | 6 | fveq1d 6719 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
8 | 7 | adantr 484 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
9 | simpr 488 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
10 | 8, 9 | fveq12d 6724 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
11 | 10 | adantl 485 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
12 | elex 3426 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
13 | 12 | adantr 484 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑀 ∈ V) |
14 | elex 3426 | . . 3 ⊢ (𝑈 ∈ 𝑊 → 𝑈 ∈ V) | |
15 | 14 | adantl 485 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑈 ∈ V) |
16 | fvexd 6732 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V) | |
17 | 2, 11, 13, 15, 16 | ovmpod 7361 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∩ cin 3865 E cep 5459 × cxp 5549 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 ωcom 7644 Sat csat 33011 Sat∈ csate 33013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-sate 33019 |
This theorem is referenced by: sate0 33090 satef 33091 satefvfmla0 33093 satefvfmla1 33100 |
Copyright terms: Public domain | W3C validator |