Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > satefv | Structured version Visualization version GIF version |
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
Ref | Expression |
---|---|
satefv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sate 33306 | . . 3 ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))) |
3 | id 22 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
4 | 3 | sqxpeqd 5621 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
5 | 4 | ineq2d 4146 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀))) |
6 | 3, 5 | oveq12d 7293 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))) |
7 | 6 | fveq1d 6776 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
9 | simpr 485 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
10 | 8, 9 | fveq12d 6781 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
11 | 10 | adantl 482 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
12 | elex 3450 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
13 | 12 | adantr 481 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑀 ∈ V) |
14 | elex 3450 | . . 3 ⊢ (𝑈 ∈ 𝑊 → 𝑈 ∈ V) | |
15 | 14 | adantl 482 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑈 ∈ V) |
16 | fvexd 6789 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V) | |
17 | 2, 11, 13, 15, 16 | ovmpod 7425 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 E cep 5494 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ωcom 7712 Sat csat 33298 Sat∈ csate 33300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sate 33306 |
This theorem is referenced by: sate0 33377 satef 33378 satefvfmla0 33380 satefvfmla1 33387 |
Copyright terms: Public domain | W3C validator |