![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satefv | Structured version Visualization version GIF version |
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
Ref | Expression |
---|---|
satefv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sate 35312 | . . 3 ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))) |
3 | id 22 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
4 | 3 | sqxpeqd 5732 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
5 | 4 | ineq2d 4241 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀))) |
6 | 3, 5 | oveq12d 7466 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))) |
7 | 6 | fveq1d 6922 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
9 | simpr 484 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
10 | 8, 9 | fveq12d 6927 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
11 | 10 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
12 | elex 3509 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
13 | 12 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑀 ∈ V) |
14 | elex 3509 | . . 3 ⊢ (𝑈 ∈ 𝑊 → 𝑈 ∈ V) | |
15 | 14 | adantl 481 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑈 ∈ V) |
16 | fvexd 6935 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V) | |
17 | 2, 11, 13, 15, 16 | ovmpod 7602 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 E cep 5598 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 Sat csat 35304 Sat∈ csate 35306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sate 35312 |
This theorem is referenced by: sate0 35383 satef 35384 satefvfmla0 35386 satefvfmla1 35393 |
Copyright terms: Public domain | W3C validator |