![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satefv | Structured version Visualization version GIF version |
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
Ref | Expression |
---|---|
satefv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sate 35185 | . . 3 ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))) |
3 | id 22 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
4 | 3 | sqxpeqd 5706 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
5 | 4 | ineq2d 4210 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀))) |
6 | 3, 5 | oveq12d 7434 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))) |
7 | 6 | fveq1d 6895 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
8 | 7 | adantr 479 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
9 | simpr 483 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
10 | 8, 9 | fveq12d 6900 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
11 | 10 | adantl 480 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
12 | elex 3482 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
13 | 12 | adantr 479 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑀 ∈ V) |
14 | elex 3482 | . . 3 ⊢ (𝑈 ∈ 𝑊 → 𝑈 ∈ V) | |
15 | 14 | adantl 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑈 ∈ V) |
16 | fvexd 6908 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V) | |
17 | 2, 11, 13, 15, 16 | ovmpod 7570 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∩ cin 3945 E cep 5577 × cxp 5672 ‘cfv 6546 (class class class)co 7416 ∈ cmpo 7418 ωcom 7868 Sat csat 35177 Sat∈ csate 35179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-sate 35185 |
This theorem is referenced by: sate0 35256 satef 35257 satefvfmla0 35259 satefvfmla1 35266 |
Copyright terms: Public domain | W3C validator |