Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefv Structured version   Visualization version   GIF version

Theorem satefv 35401
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.)
Assertion
Ref Expression
satefv ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))

Proof of Theorem satefv
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sate 35331 . . 3 Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))
21a1i 11 . 2 ((𝑀𝑉𝑈𝑊) → Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)))
3 id 22 . . . . . . 7 (𝑚 = 𝑀𝑚 = 𝑀)
43sqxpeqd 5670 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀))
54ineq2d 4183 . . . . . . 7 (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀)))
63, 5oveq12d 7405 . . . . . 6 (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀))))
76fveq1d 6860 . . . . 5 (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
87adantr 480 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
9 simpr 484 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → 𝑢 = 𝑈)
108, 9fveq12d 6865 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
1110adantl 481 . 2 (((𝑀𝑉𝑈𝑊) ∧ (𝑚 = 𝑀𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
12 elex 3468 . . 3 (𝑀𝑉𝑀 ∈ V)
1312adantr 480 . 2 ((𝑀𝑉𝑈𝑊) → 𝑀 ∈ V)
14 elex 3468 . . 3 (𝑈𝑊𝑈 ∈ V)
1514adantl 481 . 2 ((𝑀𝑉𝑈𝑊) → 𝑈 ∈ V)
16 fvexd 6873 . 2 ((𝑀𝑉𝑈𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V)
172, 11, 13, 15, 16ovmpod 7541 1 ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913   E cep 5537   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842   Sat csat 35323   Sat csate 35325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-sate 35331
This theorem is referenced by:  sate0  35402  satef  35403  satefvfmla0  35405  satefvfmla1  35412
  Copyright terms: Public domain W3C validator