Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefv Structured version   Visualization version   GIF version

Theorem satefv 35530
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.)
Assertion
Ref Expression
satefv ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))

Proof of Theorem satefv
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sate 35460 . . 3 Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))
21a1i 11 . 2 ((𝑀𝑉𝑈𝑊) → Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)))
3 id 22 . . . . . . 7 (𝑚 = 𝑀𝑚 = 𝑀)
43sqxpeqd 5653 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀))
54ineq2d 4169 . . . . . . 7 (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀)))
63, 5oveq12d 7373 . . . . . 6 (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀))))
76fveq1d 6833 . . . . 5 (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
87adantr 480 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
9 simpr 484 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → 𝑢 = 𝑈)
108, 9fveq12d 6838 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
1110adantl 481 . 2 (((𝑀𝑉𝑈𝑊) ∧ (𝑚 = 𝑀𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
12 elex 3458 . . 3 (𝑀𝑉𝑀 ∈ V)
1312adantr 480 . 2 ((𝑀𝑉𝑈𝑊) → 𝑀 ∈ V)
14 elex 3458 . . 3 (𝑈𝑊𝑈 ∈ V)
1514adantl 481 . 2 ((𝑀𝑉𝑈𝑊) → 𝑈 ∈ V)
16 fvexd 6846 . 2 ((𝑀𝑉𝑈𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V)
172, 11, 13, 15, 16ovmpod 7507 1 ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897   E cep 5520   × cxp 5619  cfv 6489  (class class class)co 7355  cmpo 7357  ωcom 7805   Sat csat 35452   Sat csate 35454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-sate 35460
This theorem is referenced by:  sate0  35531  satef  35532  satefvfmla0  35534  satefvfmla1  35541
  Copyright terms: Public domain W3C validator