Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefv Structured version   Visualization version   GIF version

Theorem satefv 32661
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.)
Assertion
Ref Expression
satefv ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))

Proof of Theorem satefv
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sate 32591 . . 3 Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))
21a1i 11 . 2 ((𝑀𝑉𝑈𝑊) → Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)))
3 id 22 . . . . . . 7 (𝑚 = 𝑀𝑚 = 𝑀)
43sqxpeqd 5587 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀))
54ineq2d 4189 . . . . . . 7 (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀)))
63, 5oveq12d 7174 . . . . . 6 (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀))))
76fveq1d 6672 . . . . 5 (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
87adantr 483 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
9 simpr 487 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → 𝑢 = 𝑈)
108, 9fveq12d 6677 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
1110adantl 484 . 2 (((𝑀𝑉𝑈𝑊) ∧ (𝑚 = 𝑀𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
12 elex 3512 . . 3 (𝑀𝑉𝑀 ∈ V)
1312adantr 483 . 2 ((𝑀𝑉𝑈𝑊) → 𝑀 ∈ V)
14 elex 3512 . . 3 (𝑈𝑊𝑈 ∈ V)
1514adantl 484 . 2 ((𝑀𝑉𝑈𝑊) → 𝑈 ∈ V)
16 fvexd 6685 . 2 ((𝑀𝑉𝑈𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V)
172, 11, 13, 15, 16ovmpod 7302 1 ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935   E cep 5464   × cxp 5553  cfv 6355  (class class class)co 7156  cmpo 7158  ωcom 7580   Sat csat 32583   Sat csate 32585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-sate 32591
This theorem is referenced by:  sate0  32662  satef  32663  satefvfmla0  32665  satefvfmla1  32672
  Copyright terms: Public domain W3C validator