Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefv Structured version   Visualization version   GIF version

Theorem satefv 34869
Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.)
Assertion
Ref Expression
satefv ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))

Proof of Theorem satefv
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sate 34799 . . 3 Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))
21a1i 11 . 2 ((𝑀𝑉𝑈𝑊) → Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)))
3 id 22 . . . . . . 7 (𝑚 = 𝑀𝑚 = 𝑀)
43sqxpeqd 5708 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀))
54ineq2d 4212 . . . . . . 7 (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀)))
63, 5oveq12d 7430 . . . . . 6 (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀))))
76fveq1d 6893 . . . . 5 (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
87adantr 480 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
9 simpr 484 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → 𝑢 = 𝑈)
108, 9fveq12d 6898 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
1110adantl 481 . 2 (((𝑀𝑉𝑈𝑊) ∧ (𝑚 = 𝑀𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
12 elex 3492 . . 3 (𝑀𝑉𝑀 ∈ V)
1312adantr 480 . 2 ((𝑀𝑉𝑈𝑊) → 𝑀 ∈ V)
14 elex 3492 . . 3 (𝑈𝑊𝑈 ∈ V)
1514adantl 481 . 2 ((𝑀𝑉𝑈𝑊) → 𝑈 ∈ V)
16 fvexd 6906 . 2 ((𝑀𝑉𝑈𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V)
172, 11, 13, 15, 16ovmpod 7563 1 ((𝑀𝑉𝑈𝑊) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947   E cep 5579   × cxp 5674  cfv 6543  (class class class)co 7412  cmpo 7414  ωcom 7859   Sat csat 34791   Sat csate 34793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-sate 34799
This theorem is referenced by:  sate0  34870  satef  34871  satefvfmla0  34873  satefvfmla1  34880
  Copyright terms: Public domain W3C validator