| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satefv | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
| Ref | Expression |
|---|---|
| satefv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sate 35460 | . . 3 ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))) |
| 3 | id 22 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
| 4 | 3 | sqxpeqd 5653 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
| 5 | 4 | ineq2d 4169 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ( E ∩ (𝑚 × 𝑚)) = ( E ∩ (𝑀 × 𝑀))) |
| 6 | 3, 5 | oveq12d 7373 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))) |
| 7 | 6 | fveq1d 6833 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
| 10 | 8, 9 | fveq12d 6838 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
| 11 | 10 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑢 = 𝑈)) → (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
| 12 | elex 3458 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑀 ∈ V) |
| 14 | elex 3458 | . . 3 ⊢ (𝑈 ∈ 𝑊 → 𝑈 ∈ V) | |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → 𝑈 ∈ V) |
| 16 | fvexd 6846 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) ∈ V) | |
| 17 | 2, 11, 13, 15, 16 | ovmpod 7507 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 E cep 5520 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 ωcom 7805 Sat csat 35452 Sat∈ csate 35454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-sate 35460 |
| This theorem is referenced by: sate0 35531 satef 35532 satefvfmla0 35534 satefvfmla1 35541 |
| Copyright terms: Public domain | W3C validator |