![]() |
Metamath
Proof Explorer Theorem List (p. 344 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fdvposlt 34301* | Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ πΈ = (πΆ(,)π·) & β’ (π β π΄ β πΈ) & β’ (π β π΅ β πΈ) & β’ (π β πΉ:πΈβΆβ) & β’ (π β (β D πΉ) β (πΈβcnββ)) & β’ (π β π΄ < π΅) & β’ ((π β§ π₯ β (π΄(,)π΅)) β 0 < ((β D πΉ)βπ₯)) β β’ (π β (πΉβπ΄) < (πΉβπ΅)) | ||
Theorem | fdvneggt 34302* | Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ πΈ = (πΆ(,)π·) & β’ (π β π΄ β πΈ) & β’ (π β π΅ β πΈ) & β’ (π β πΉ:πΈβΆβ) & β’ (π β (β D πΉ) β (πΈβcnββ)) & β’ (π β π΄ < π΅) & β’ ((π β§ π₯ β (π΄(,)π΅)) β ((β D πΉ)βπ₯) < 0) β β’ (π β (πΉβπ΅) < (πΉβπ΄)) | ||
Theorem | fdvposle 34303* | Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ πΈ = (πΆ(,)π·) & β’ (π β π΄ β πΈ) & β’ (π β π΅ β πΈ) & β’ (π β πΉ:πΈβΆβ) & β’ (π β (β D πΉ) β (πΈβcnββ)) & β’ (π β π΄ β€ π΅) & β’ ((π β§ π₯ β (π΄(,)π΅)) β 0 β€ ((β D πΉ)βπ₯)) β β’ (π β (πΉβπ΄) β€ (πΉβπ΅)) | ||
Theorem | fdvnegge 34304* | Functions with a nonpositive derivative, i.e., decreasing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ πΈ = (πΆ(,)π·) & β’ (π β π΄ β πΈ) & β’ (π β π΅ β πΈ) & β’ (π β πΉ:πΈβΆβ) & β’ (π β (β D πΉ) β (πΈβcnββ)) & β’ (π β π΄ β€ π΅) & β’ ((π β§ π₯ β (π΄(,)π΅)) β ((β D πΉ)βπ₯) β€ 0) β β’ (π β (πΉβπ΅) β€ (πΉβπ΄)) | ||
Theorem | prodfzo03 34305* | A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π = 0 β π· = π΄) & β’ (π = 1 β π· = π΅) & β’ (π = 2 β π· = πΆ) & β’ ((π β§ π β (0..^3)) β π· β β) β β’ (π β βπ β (0..^3)π· = (π΄ Β· (π΅ Β· πΆ))) | ||
Theorem | actfunsnf1o 34306* | The action πΉ of extending function from π΅ to πΆ with new values at point πΌ is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
β’ ((π β§ π β πΆ) β π΄ β (πΆ βm π΅)) & β’ (π β πΆ β V) & β’ (π β πΌ β π) & β’ (π β Β¬ πΌ β π΅) & β’ πΉ = (π₯ β π΄ β¦ (π₯ βͺ {β¨πΌ, πβ©})) β β’ ((π β§ π β πΆ) β πΉ:π΄β1-1-ontoβran πΉ) | ||
Theorem | actfunsnrndisj 34307* | The action πΉ of extending function from π΅ to πΆ with new values at point πΌ yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
β’ ((π β§ π β πΆ) β π΄ β (πΆ βm π΅)) & β’ (π β πΆ β V) & β’ (π β πΌ β π) & β’ (π β Β¬ πΌ β π΅) & β’ πΉ = (π₯ β π΄ β¦ (π₯ βͺ {β¨πΌ, πβ©})) β β’ (π β Disj π β πΆ ran πΉ) | ||
Theorem | itgexpif 34308* | The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
β’ (π β β€ β β«(0(,)1)(expβ((i Β· (2 Β· Ο)) Β· (π Β· π₯))) dπ₯ = if(π = 0, 1, 0)) | ||
Theorem | fsum2dsub 34309* | Lemma for breprexp 34335- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π = (π β π) β π΄ = π΅) & β’ ((π β§ π β (β€β₯β-π) β§ π β (1...π)) β π΄ β β) & β’ (((π β§ π β (1...π)) β§ π β (((π + π) + 1)...(π + π))) β π΅ = 0) & β’ (((π β§ π β (1...π)) β§ π β (0..^π)) β π΅ = 0) β β’ (π β Ξ£π β (0...π)Ξ£π β (1...π)π΄ = Ξ£π β (0...(π + π))Ξ£π β (1...π)π΅) | ||
Syntax | crepr 34310 | Representations of a number as a sum of nonnegative integers. |
class repr | ||
Definition | df-repr 34311* | The representations of a nonnegative π as the sum of π nonnegative integers from a set π. Cf. Definition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ repr = (π β β0 β¦ (π β π« β, π β β€ β¦ {π β (π βm (0..^π )) β£ Ξ£π β (0..^π )(πβπ) = π})) | ||
Theorem | reprval 34312* | Value of the representations of π as the sum of π nonnegative integers in a given set π΄. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) β β’ (π β (π΄(reprβπ)π) = {π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π}) | ||
Theorem | repr0 34313 | There is exactly one representation with no elements (an empty sum), only for π = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) β β’ (π β (π΄(reprβ0)π) = if(π = 0, {β }, β )) | ||
Theorem | reprf 34314 | Members of the representation of π as the sum of π nonnegative integers from set π΄ as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β πΆ β (π΄(reprβπ)π)) β β’ (π β πΆ:(0..^π)βΆπ΄) | ||
Theorem | reprsum 34315* | Sums of values of the members of the representation of π equal π. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β πΆ β (π΄(reprβπ)π)) β β’ (π β Ξ£π β (0..^π)(πΆβπ) = π) | ||
Theorem | reprle 34316 | Upper bound to the terms in the representations of π as the sum of π nonnegative integers from set π΄. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β πΆ β (π΄(reprβπ)π)) & β’ (π β π β (0..^π)) β β’ (π β (πΆβπ) β€ π) | ||
Theorem | reprsuc 34317* | Express the representations recursively. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ πΉ = (π β (π΄(reprβπ)(π β π)) β¦ (π βͺ {β¨π, πβ©})) β β’ (π β (π΄(reprβ(π + 1))π) = βͺ π β π΄ ran πΉ) | ||
Theorem | reprfi 34318 | Bounded representations are finite sets. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π΄ β Fin) β β’ (π β (π΄(reprβπ)π) β Fin) | ||
Theorem | reprss 34319 | Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π΅ β π΄) β β’ (π β (π΅(reprβπ)π) β (π΄(reprβπ)π)) | ||
Theorem | reprinrn 34320* | Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) β β’ (π β (π β ((π΄ β© π΅)(reprβπ)π) β (π β (π΄(reprβπ)π) β§ ran π β π΅))) | ||
Theorem | reprlt 34321 | There are no representations of π with more than π terms. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π < π) β β’ (π β (π΄(reprβπ)π) = β ) | ||
Theorem | hashreprin 34322* | Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π΅ β Fin) & β’ (π β π΅ β β) β β’ (π β (β―β((π΄ β© π΅)(reprβπ)π)) = Ξ£π β (π΅(reprβπ)π)βπ β (0..^π)(((πββ)βπ΄)β(πβπ))) | ||
Theorem | reprgt 34323 | There are no representations of more than (π Β· π) with only π terms bounded by π. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π΄ β (1...π)) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β (π Β· π) < π) β β’ (π β (π΄(reprβπ)π) = β ) | ||
Theorem | reprinfz1 34324 | For the representation of π, it is sufficient to consider nonnegative integers up to π. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π΄ β β) β β’ (π β (π΄(reprβπ)π) = ((π΄ β© (1...π))(reprβπ)π)) | ||
Theorem | reprfi2 34325 | Corollary of reprinfz1 34324. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π΄ β β) β β’ (π β (π΄(reprβπ)π) β Fin) | ||
Theorem | reprfz1 34326 | Corollary of reprinfz1 34324. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) β β’ (π β (β(reprβπ)π) = ((1...π)(reprβπ)π)) | ||
Theorem | hashrepr 34327* | Develop the number of representations of an integer π as a sum of nonnegative integers in set π΄. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β0) & β’ (π β π β β0) β β’ (π β (β―β(π΄(reprβπ)π)) = Ξ£π β (β(reprβπ)π)βπ β (0..^π)(((πββ)βπ΄)β(πβπ))) | ||
Theorem | reprpmtf1o 34328* | Transposing 0 and π maps representations with a condition on the first index to transpositions with the same condition on the index π. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ (π β π β β) & β’ (π β π β β€) & β’ (π β π΄ β β) & β’ (π β π β (0..^π)) & β’ π = {π β (π΄(reprβπ)π) β£ Β¬ (πβ0) β π΅} & β’ π = {π β (π΄(reprβπ)π) β£ Β¬ (πβπ) β π΅} & β’ π = if(π = 0, ( I βΎ (0..^π)), ((pmTrspβ(0..^π))β{π, 0})) & β’ πΉ = (π β π β¦ (π β π)) β β’ (π β πΉ:πβ1-1-ontoβπ) | ||
Theorem | reprdifc 34329* | Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ πΆ = {π β (π΄(reprβπ)π) β£ Β¬ (πβπ₯) β π΅} & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β0) & β’ (π β π β β0) β β’ (π β ((π΄(reprβπ)π) β (π΅(reprβπ)π)) = βͺ π₯ β (0..^π)πΆ) | ||
Theorem | chpvalz 34330* | Value of the second Chebyshev function, or summatory of the von Mangoldt function. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ (π β β€ β (Οβπ) = Ξ£π β (1...π)(Ξβπ)) | ||
Theorem | chtvalz 34331* | Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ (π β β€ β (ΞΈβπ) = Ξ£π β ((1...π) β© β)(logβπ)) | ||
Theorem | breprexplema 34332* | Lemma for breprexp 34335 (induction step for weighted sums over representations). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β€ ((π + 1) Β· π)) & β’ (((π β§ π₯ β (0..^(π + 1))) β§ π¦ β β) β ((πΏβπ₯)βπ¦) β β) β β’ (π β Ξ£π β ((1...π)(reprβ(π + 1))π)βπ β (0..^(π + 1))((πΏβπ)β(πβπ)) = Ξ£π β (1...π)Ξ£π β ((1...π)(reprβπ)(π β π))(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· ((πΏβπ)βπ))) | ||
Theorem | breprexplemb 34333 | Lemma for breprexp 34335 (closure). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) & β’ (π β π β (0..^π)) & β’ (π β π β β) β β’ (π β ((πΏβπ)βπ) β β) | ||
Theorem | breprexplemc 34334* | Lemma for breprexp 34335 (induction step). (Contributed by Thierry Arnoux, 6-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) & β’ (π β π β β0) & β’ (π β (π + 1) β€ π) & β’ (π β βπ β (0..^π)Ξ£π β (1...π)(((πΏβπ)βπ) Β· (πβπ)) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (πβπ))) β β’ (π β βπ β (0..^(π + 1))Ξ£π β (1...π)(((πΏβπ)βπ) Β· (πβπ)) = Ξ£π β (0...((π + 1) Β· π))Ξ£π β ((1...π)(reprβ(π + 1))π)(βπ β (0..^(π + 1))((πΏβπ)β(πβπ)) Β· (πβπ))) | ||
Theorem | breprexp 34335* | Express the π th power of the finite series in terms of the number of representations of integers π as sums of π terms. This is a general formulation which allows logarithmic weighting of the sums (see https://mathoverflow.net/questions/253246) and a mix of different smoothing functions taken into account in πΏ. See breprexpnat 34336 for the simple case presented in the proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 6-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) β β’ (π β βπ β (0..^π)Ξ£π β (1...π)(((πΏβπ)βπ) Β· (πβπ)) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (πβπ))) | ||
Theorem | breprexpnat 34336* | Express the π th power of the finite series in terms of the number of representations of integers π as sums of π terms of elements of π΄, bounded by π. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ π = Ξ£π β (π΄ β© (1...π))(πβπ) & β’ π = (β―β((π΄ β© (1...π))(reprβπ)π)) β β’ (π β (πβπ) = Ξ£π β (0...(π Β· π))(π Β· (πβπ))) | ||
Syntax | cvts 34337 | The Vinogradov trigonometric sums. |
class vts | ||
Definition | df-vts 34338* | Define the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ vts = (π β (β βm β), π β β0 β¦ (π₯ β β β¦ Ξ£π β (1...π)((πβπ) Β· (expβ((i Β· (2 Β· Ο)) Β· (π Β· π₯)))))) | ||
Theorem | vtsval 34339* | Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:ββΆβ) β β’ (π β ((πΏvtsπ)βπ) = Ξ£π β (1...π)((πΏβπ) Β· (expβ((i Β· (2 Β· Ο)) Β· (π Β· π))))) | ||
Theorem | vtscl 34340 | Closure of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:ββΆβ) β β’ (π β ((πΏvtsπ)βπ) β β) | ||
Theorem | vtsprod 34341* | Express the Vinogradov trigonometric sums to the power of π (Contributed by Thierry Arnoux, 12-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β π β β0) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) β β’ (π β βπ β (0..^π)(((πΏβπ)vtsπ)βπ) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2 Β· Ο)) Β· (π Β· π))))) | ||
Theorem | circlemeth 34342* | The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) β β’ (π β Ξ£π β (β(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = β«(0(,)1)(βπ β (0..^π)(((πΏβπ)vtsπ)βπ₯) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) | ||
Theorem | circlemethnat 34343* | The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses π , the number of different ways a nonnegative integer π can be represented as the sum of at most π integers in the set π΄ as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ π = (β―β(π΄(reprβπ)π)) & β’ πΉ = ((((πββ)βπ΄)vtsπ)βπ₯) & β’ π β β0 & β’ π΄ β β & β’ π β β β β’ π = β«(0(,)1)((πΉβπ) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯ | ||
Theorem | circlevma 34344* | The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ (π β π β β0) β β’ (π β Ξ£π β (β(reprβ3)π)((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))) = β«(0(,)1)((((Ξvtsπ)βπ₯)β3) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) | ||
Theorem | circlemethhgt 34345* | The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions π» and πΎ. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
β’ (π β π»:ββΆβ) & β’ (π β πΎ:ββΆβ) & β’ (π β π β β0) β β’ (π β Ξ£π β (β(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) = β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) | ||
Axiom | ax-hgt749 34346* | Statement 7.49 of [Helfgott] p. 70. For a sufficiently big odd π, this postulates the existence of smoothing functions β (eta star) and π (eta plus) such that the lower bound for the circle integral is big enough. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ βπ β {π§ β β€ β£ Β¬ 2 β₯ π§} ((;10β;27) β€ π β ββ β ((0[,)+β) βm β)βπ β ((0[,)+β) βm β)(βπ β β (πβπ) β€ (1._0_7_9_9_55) β§ βπ β β (ββπ) β€ (1._4_14) β§ ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· β)vtsπ)βπ₯) Β· ((((Ξ βf Β· π)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯)) | ||
Axiom | ax-ros335 34347 | Theorem 12. of [RosserSchoenfeld] p. 71. Theorem chpo1ubb 27444 states that the Ο function is bounded by a linear term; this axiom postulates an upper bound for that linear term. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ βπ₯ β β+ (Οβπ₯) < ((1._0_3_8_83) Β· π₯) | ||
Axiom | ax-ros336 34348 | Theorem 13. of [RosserSchoenfeld] p. 71. Theorem chpchtlim 27442 states that the Ο and ΞΈ function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ βπ₯ β β+ ((Οβπ₯) β (ΞΈβπ₯)) < ((1._4_2_62) Β· (ββπ₯)) | ||
Theorem | hgt750lemc 34349* | An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
β’ (π β π β β) β β’ (π β Ξ£π β (1...π)(Ξβπ) < ((1._0_3_8_83) Β· π)) | ||
Theorem | hgt750lemd 34350* | An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
β’ (π β π β β) & β’ (π β (;10β;27) β€ π) β β’ (π β Ξ£π β (((1...π) β β) βͺ {2})(Ξβπ) < ((1._4_2_63) Β· (ββπ))) | ||
Theorem | hgt749d 34351* | A deduction version of ax-hgt749 34346. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) β β’ (π β ββ β ((0[,)+β) βm β)βπ β ((0[,)+β) βm β)(βπ β β (πβπ) β€ (1._0_7_9_9_55) β§ βπ β β (ββπ) β€ (1._4_14) β§ ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· β)vtsπ)βπ₯) Β· ((((Ξ βf Β· π)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯)) | ||
Theorem | logdivsqrle 34352 | Conditions for ((log x ) / ( sqrt π₯)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) & β’ (π β (expβ2) β€ π΄) & β’ (π β π΄ β€ π΅) β β’ (π β ((logβπ΅) / (ββπ΅)) β€ ((logβπ΄) / (ββπ΄))) | ||
Theorem | hgt750lem 34353 | Lemma for tgoldbachgtd 34364. (Contributed by Thierry Arnoux, 17-Dec-2021.) |
β’ ((π β β0 β§ (;10β;27) β€ π) β ((7._3_48) Β· ((logβπ) / (ββπ))) < (0._0_0_0_4_2_2_48)) | ||
Theorem | hgt750lem2 34354 | Decimal multiplication galore! (Contributed by Thierry Arnoux, 26-Dec-2021.) |
β’ (3 Β· ((((1._0_7_9_9_55)β2) Β· (1._4_14)) Β· ((1._4_2_63) Β· (1._0_3_8_83)))) < (7._3_48) | ||
Theorem | hgt750lemf 34355* | Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
β’ (π β π΄ β Fin) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β π΄) β (πβ0) β β) & β’ ((π β§ π β π΄) β (πβ1) β β) & β’ ((π β§ π β π΄) β (πβ2) β β) & β’ ((π β§ π β β) β (πΎβπ) β€ π) & β’ ((π β§ π β β) β (π»βπ) β€ π) β β’ (π β Ξ£π β π΄ (((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) β€ (((πβ2) Β· π) Β· Ξ£π β π΄ ((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))))) | ||
Theorem | hgt750lemg 34356* | Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation π to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
β’ πΉ = (π β π β¦ (π β π)) & β’ (π β π:(0..^3)β1-1-ontoβ(0..^3)) & β’ (π β π:(0..^3)βΆβ) & β’ (π β πΏ:ββΆβ) & β’ (π β π β π ) β β’ (π β ((πΏβ((πΉβπ)β0)) Β· ((πΏβ((πΉβπ)β1)) Β· (πΏβ((πΉβπ)β2)))) = ((πΏβ(πβ0)) Β· ((πΏβ(πβ1)) Β· (πΏβ(πβ2))))) | ||
Theorem | oddprm2 34357* | Two ways to write the set of odd primes. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} β β’ (β β {2}) = (π β© β) | ||
Theorem | hgt750lemb 34358* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β β) & β’ (π β 2 β€ π) & β’ π΄ = {π β (β(reprβ3)π) β£ Β¬ (πβ0) β (π β© β)} β β’ (π β Ξ£π β π΄ ((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))) β€ ((logβπ) Β· (Ξ£π β (((1...π) β β) βͺ {2})(Ξβπ) Β· Ξ£π β (1...π)(Ξβπ)))) | ||
Theorem | hgt750lema 34359* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β β) & β’ (π β 2 β€ π) & β’ π΄ = {π β (β(reprβ3)π) β£ Β¬ (πβ0) β (π β© β)} & β’ πΉ = (π β {π β (β(reprβ3)π) β£ Β¬ (πβπ) β (π β© β)} β¦ (π β if(π = 0, ( I βΎ (0..^3)), ((pmTrspβ(0..^3))β{π, 0})))) β β’ (π β Ξ£π β ((β(reprβ3)π) β ((π β© β)(reprβ3)π))((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))) β€ (3 Β· Ξ£π β π΄ ((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))))) | ||
Theorem | hgt750leme 34360* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β β) & β’ (π β (;10β;27) β€ π) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) & β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) β β’ (π β Ξ£π β ((β(reprβ3)π) β ((π β© β)(reprβ3)π))(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) β€ (((7._3_48) Β· ((logβπ) / (ββπ))) Β· (πβ2))) | ||
Theorem | tgoldbachgnn 34361* | Lemma for tgoldbachgtd 34364. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) β β’ (π β π β β) | ||
Theorem | tgoldbachgtde 34362* | Lemma for tgoldbachgtd 34364. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) & β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) & β’ (π β ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) β β’ (π β 0 < Ξ£π β ((π β© β)(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2)))))) | ||
Theorem | tgoldbachgtda 34363* | Lemma for tgoldbachgtd 34364. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) & β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) & β’ (π β ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) β β’ (π β 0 < (β―β((π β© β)(reprβ3)π))) | ||
Theorem | tgoldbachgtd 34364* | Odd integers greater than (;10β;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) β β’ (π β 0 < (β―β((π β© β)(reprβ3)π))) | ||
Theorem | tgoldbachgt 34365* | Odd integers greater than (;10β;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set πΊ of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ πΊ = {π§ β π β£ βπ β β βπ β β βπ β β ((π β π β§ π β π β§ π β π) β§ π§ = ((π + π) + π))} β β’ βπ β β (π β€ (;10β;27) β§ βπ β π (π < π β π β πΊ)) | ||
This definition has been superseded by DimTarskiGβ₯ and is no longer needed in the main part of set.mm. It is only kept here for reference. | ||
Syntax | cstrkg2d 34366 | Extends class notation with the class of geometries fulfilling the planarity axioms. |
class TarskiG2D | ||
Definition | df-trkg2d 34367* | Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of [Schwabhauser] p. 12, and the upper dimension axiom, Axiom A9 of [Schwabhauser] p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019.) (New usage is discouraged.) |
β’ TarskiG2D = {π β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))} | ||
Theorem | istrkg2d 34368* | Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) β β’ (πΊ β TarskiG2D β (πΊ β V β§ (βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) | ||
Theorem | axtglowdim2ALTV 34369* | Alternate version of axtglowdim2 28330. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG2D) β β’ (π β βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) | ||
Theorem | axtgupdim2ALTV 34370 | Alternate version of axtgupdim2 28331. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β π) = (π β π)) & β’ (π β (π β π) = (π β π)) & β’ (π β (π β π) = (π β π)) & β’ (π β πΊ β TarskiG2D) β β’ (π β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) | ||
Syntax | cafs 34371 | Declare the syntax for the outer five segment configuration. |
class AFS | ||
Definition | df-afs 34372* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (axtg5seg 28325). See df-ofs 35649. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) (Revised by Thierry Arnoux, 15-Mar-2019.) |
β’ AFS = (π β TarskiG β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / β][(Itvβπ) / π]βπ β π βπ β π βπ β π βπ β π βπ₯ β π βπ¦ β π βπ§ β π βπ€ β π (π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ ((π β (πππ) β§ π¦ β (π₯ππ§)) β§ ((πβπ) = (π₯βπ¦) β§ (πβπ) = (π¦βπ§)) β§ ((πβπ) = (π₯βπ€) β§ (πβπ) = (π¦βπ€))))}) | ||
Theorem | afsval 34373* | Value of the AFS relation for a given geometry structure. (Contributed by Thierry Arnoux, 20-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) β β’ (π β (AFSβπΊ) = {β¨π, πβ© β£ βπ β π βπ β π βπ β π βπ β π βπ₯ β π βπ¦ β π βπ§ β π βπ€ β π (π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ ((π β (ππΌπ) β§ π¦ β (π₯πΌπ§)) β§ ((π β π) = (π₯ β π¦) β§ (π β π) = (π¦ β π§)) β§ ((π β π) = (π₯ β π€) β§ (π β π) = (π¦ β π€))))}) | ||
Theorem | brafs 34374 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (AFSβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (β¨β¨π΄, π΅β©, β¨πΆ, π·β©β©πβ¨β¨π, πβ©, β¨π, πβ©β© β ((π΅ β (π΄πΌπΆ) β§ π β (ππΌπ)) β§ ((π΄ β π΅) = (π β π) β§ (π΅ β πΆ) = (π β π)) β§ ((π΄ β π·) = (π β π) β§ (π΅ β π·) = (π β π))))) | ||
Theorem | tg5segofs 34375 | Rephrase axtg5seg 28325 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ π = (AFSβπΊ) & β’ (π β π» β π) & β’ (π β πΌ β π) & β’ (π β β¨β¨π΄, π΅β©, β¨πΆ, π·β©β©πβ¨β¨πΈ, πΉβ©, β¨π», πΌβ©β©) & β’ (π β π΄ β π΅) β β’ (π β (πΆ β π·) = (π» β πΌ)) | ||
Syntax | clpad 34376 | Extend class notation with the leftpad function. |
class leftpad | ||
Definition | df-lpad 34377* | Define the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ leftpad = (π β V, π€ β V β¦ (π β β0 β¦ (((0..^(π β (β―βπ€))) Γ {π}) ++ π€))) | ||
Theorem | lpadval 34378 | Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) β β’ (π β ((πΆ leftpad π)βπΏ) = (((0..^(πΏ β (β―βπ))) Γ {πΆ}) ++ π)) | ||
Theorem | lpadlem1 34379 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΆ β π) β β’ (π β ((0..^(πΏ β (β―βπ))) Γ {πΆ}) β Word π) | ||
Theorem | lpadlem3 34380 | Lemma for lpadlen1 34381. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β πΏ β€ (β―βπ)) β β’ (π β ((0..^(πΏ β (β―βπ))) Γ {πΆ}) = β ) | ||
Theorem | lpadlen1 34381 | Length of a left-padded word, in the case the length of the given word π is at least the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β πΏ β€ (β―βπ)) β β’ (π β (β―β((πΆ leftpad π)βπΏ)) = (β―βπ)) | ||
Theorem | lpadlem2 34382 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β (β―βπ) β€ πΏ) β β’ (π β (β―β((0..^(πΏ β (β―βπ))) Γ {πΆ})) = (πΏ β (β―βπ))) | ||
Theorem | lpadlen2 34383 | Length of a left-padded word, in the case the given word π is shorter than the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β (β―βπ) β€ πΏ) β β’ (π β (β―β((πΆ leftpad π)βπΏ)) = πΏ) | ||
Theorem | lpadmax 34384 | Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) β β’ (π β (β―β((πΆ leftpad π)βπΏ)) = if(πΏ β€ (β―βπ), (β―βπ), πΏ)) | ||
Theorem | lpadleft 34385 | The contents of prefix of a left-padded word is always the letter πΆ. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β π β (0..^(πΏ β (β―βπ)))) β β’ (π β (((πΆ leftpad π)βπΏ)βπ) = πΆ) | ||
Theorem | lpadright 34386 | The suffix of a left-padded word the original word π. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β π = if(πΏ β€ (β―βπ), 0, (πΏ β (β―βπ)))) & β’ (π β π β (0..^(β―βπ))) β β’ (π β (((πΆ leftpad π)βπΏ)β(π + π)) = (πβπ)) | ||
Note: On 4-Sep-2016 and after, 745 unused theorems were deleted from this mathbox, and 359 theorems used only once or twice were merged into their referencing theorems. The originals can be recovered from set.mm versions prior to this date. | ||
Syntax | w-bnj17 34387 | Extend wff notation with the 4-way conjunction. (New usage is discouraged.) |
wff (π β§ π β§ π β§ π) | ||
Definition | df-bnj17 34388 | Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ ((π β§ π β§ π β§ π) β ((π β§ π β§ π) β§ π)) | ||
Syntax | c-bnj14 34389 | Extend class notation with the function giving: the class of all elements of π΄ that are "smaller" than π according to π . (New usage is discouraged.) |
class pred(π, π΄, π ) | ||
Definition | df-bnj14 34390* | Define the function giving: the class of all elements of π΄ that are "smaller" than π according to π . (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ pred(π, π΄, π ) = {π¦ β π΄ β£ π¦π π} | ||
Syntax | w-bnj13 34391 | Extend wff notation with the following predicate: π is set-like on π΄. (New usage is discouraged.) |
wff π Se π΄ | ||
Definition | df-bnj13 34392* | Define the following predicate: π is set-like on π΄. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ (π Se π΄ β βπ₯ β π΄ pred(π₯, π΄, π ) β V) | ||
Syntax | w-bnj15 34393 | Extend wff notation with the following predicate: π is both well-founded and set-like on π΄. (New usage is discouraged.) |
wff π FrSe π΄ | ||
Definition | df-bnj15 34394 | Define the following predicate: π is both well-founded and set-like on π΄. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ (π FrSe π΄ β (π Fr π΄ β§ π Se π΄)) | ||
Syntax | c-bnj18 34395 | Extend class notation with the function giving: the transitive closure of π in π΄ by π . (New usage is discouraged.) |
class trCl(π, π΄, π ) | ||
Definition | df-bnj18 34396* | Define the function giving: the transitive closure of π in π΄ by π . This definition has been designed for facilitating verification that it is eliminable and that the $d restrictions are sound and complete. For a more readable definition see bnj882 34627. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ trCl(π, π΄, π ) = βͺ π β {π β£ βπ β (Ο β {β })(π Fn π β§ (πββ ) = pred(π, π΄, π ) β§ βπ β Ο (suc π β π β (πβsuc π) = βͺ π¦ β (πβπ) pred(π¦, π΄, π )))}βͺ π β dom π(πβπ) | ||
Syntax | w-bnj19 34397 | Extend wff notation with the following predicate: π΅ is transitive for π΄ and π . (New usage is discouraged.) |
wff TrFo(π΅, π΄, π ) | ||
Definition | df-bnj19 34398* | Define the following predicate: π΅ is transitive for π΄ and π . (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ ( TrFo(π΅, π΄, π ) β βπ₯ β π΅ pred(π₯, π΄, π ) β π΅) | ||
Theorem | bnj170 34399 | β§-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
β’ ((π β§ π β§ π) β ((π β§ π) β§ π)) | ||
Theorem | bnj240 34400 | β§-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ (π β πβ²) & β’ (π β πβ²) β β’ ((π β§ π β§ π) β (πβ² β§ πβ²)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |