![]() |
Metamath
Proof Explorer Theorem List (p. 344 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | supfz 34301 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
Theorem | inffz 34302 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
Theorem | fz0n 34303 | The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) | ||
Theorem | shftvalg 34304 | Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
Theorem | divcnvlin 34305* | Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | climlec3 34306* | Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | logi 34307 | Calculate the logarithm of i. (Contributed by Scott Fenton, 13-Apr-2020.) |
⊢ (log‘i) = (i · (π / 2)) | ||
Theorem | iexpire 34308 | i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020.) |
⊢ (i↑𝑐i) ∈ ℝ | ||
Theorem | bcneg1 34309 | The binomial coefficent over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = 0) | ||
Theorem | bcm1nt 34310 | The proportion of one bionmial coefficient to another with 𝑁 decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁 − 𝐾)))) | ||
Theorem | bcprod 34311* | A product identity for binomial coefficents. (Contributed by Scott Fenton, 23-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))) | ||
Theorem | bccolsum 34312* | A column-sum rule for binomial coefficents. (Contributed by Scott Fenton, 24-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))) | ||
Theorem | iprodefisumlem 34313 | Lemma for iprodefisum 34314. (Contributed by Scott Fenton, 11-Feb-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹))) | ||
Theorem | iprodefisum 34314* | Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (exp‘𝐵) = (exp‘Σ𝑘 ∈ 𝑍 𝐵)) | ||
Theorem | iprodgam 34315* | An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.) |
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴)) | ||
Theorem | faclimlem1 34316* | Lemma for faclim 34319. Closed form for a particular sequence. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))) | ||
Theorem | faclimlem2 34317* | Lemma for faclim 34319. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1)) | ||
Theorem | faclimlem3 34318 | Lemma for faclim 34319. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵))))) | ||
Theorem | faclim 34319* | An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) ⇒ ⊢ (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴)) | ||
Theorem | iprodfac 34320* | An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) | ||
Theorem | faclim2 34321* | Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇒ ⊢ (𝑀 ∈ ℕ0 → 𝐹 ⇝ 1) | ||
Theorem | gcd32 34322 | Swap the second and third arguments of a gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐴 gcd 𝐶) gcd 𝐵)) | ||
Theorem | gcdabsorb 34323 | Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐵) = (𝐴 gcd 𝐵)) | ||
Theorem | dftr6 34324 | A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) | ||
Theorem | coep 34325* | Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) | ||
Theorem | coepr 34326* | Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) | ||
Theorem | dffr5 34327 | A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.) |
⊢ (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ ◡𝑅))) | ||
Theorem | dfso2 34328 | Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.) |
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ ◡𝑅)))) | ||
Theorem | br8 34329* | Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑔 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (ℎ = 𝐻 → (𝜎 ↔ 𝜌)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 ∃𝑔 ∈ 𝑃 ∃ℎ ∈ 𝑃 (𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑒, 𝑓〉, 〈𝑔, ℎ〉〉 ∧ 𝜑)} ⇒ ⊢ (((𝑋 ∈ 𝑆 ∧ 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄) ∧ (𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ∧ 𝐻 ∈ 𝑄)) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑅〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 𝜌)) | ||
Theorem | br6 34330* | Substitution for a six-place predicate. (Contributed by Scott Fenton, 4-Oct-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 (𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄 ∧ 𝐶 ∈ 𝑄) ∧ (𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄 ∧ 𝐹 ∈ 𝑄)) → (〈𝐴, 〈𝐵, 𝐶〉〉𝑅〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 𝜁)) | ||
Theorem | br4 34331* | Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013.) (Revised by Mario Carneiro, 14-Oct-2013.) |
⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 (𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄)) → (〈𝐴, 𝐵〉𝑅〈𝐶, 𝐷〉 ↔ 𝜏)) | ||
Theorem | cnvco1 34332 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) | ||
Theorem | cnvco2 34333 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) | ||
Theorem | eldm3 34334 | Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.) |
⊢ (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅) | ||
Theorem | elrn3 34335 | Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.) |
⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) | ||
Theorem | pocnv 34336 | The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) | ||
Theorem | socnv 34337 | The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) | ||
Theorem | sotrd 34338 | Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑅𝑌) & ⊢ (𝜑 → 𝑌𝑅𝑍) ⇒ ⊢ (𝜑 → 𝑋𝑅𝑍) | ||
Theorem | elintfv 34339* | Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ 𝑋 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) | ||
Theorem | funpsstri 34340 | A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.) |
⊢ ((Fun 𝐻 ∧ (𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹)) | ||
Theorem | fundmpss 34341 | If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ (Fun 𝐺 → (𝐹 ⊊ 𝐺 → dom 𝐹 ⊊ dom 𝐺)) | ||
Theorem | funsseq 34342 | Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) | ||
Theorem | fununiq 34343 | The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) | ||
Theorem | funbreq 34344 | An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | br1steq 34345 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴) | ||
Theorem | br2ndeq 34346 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) | ||
Theorem | dfdm5 34347 | Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | ||
Theorem | dfrn5 34348 | Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | ||
Theorem | opelco3 34349 | Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) | ||
Theorem | elima4 34350 | Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.) |
⊢ (𝐴 ∈ (𝑅 “ 𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅) | ||
Theorem | fv1stcnv 34351 | The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉) → (◡(1st ↾ (𝐴 × {𝑌}))‘𝑋) = 〈𝑋, 𝑌〉) | ||
Theorem | fv2ndcnv 34352 | The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (◡(2nd ↾ ({𝑋} × 𝐴))‘𝑌) = 〈𝑋, 𝑌〉) | ||
Theorem | setinds 34353* | Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.) |
⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | setinds2f 34354* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | setinds2 34355* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | elpotr 34356* | A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.) |
⊢ (∀𝑧 ∈ 𝐴 Tr 𝑧 → E Po 𝐴) | ||
Theorem | dford5reg 34357 | Given ax-reg 9528, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) | ||
Theorem | dfon2lem1 34358 | Lemma for dfon2 34367. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} | ||
Theorem | dfon2lem2 34359* | Lemma for dfon2 34367. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 | ||
Theorem | dfon2lem3 34360* | Lemma for dfon2 34367. All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) | ||
Theorem | dfon2lem4 34361* | Lemma for dfon2 34367. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
Theorem | dfon2lem5 34362* | Lemma for dfon2 34367. Two sets satisfying the new definition also satisfy trichotomy with respect to ∈. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | dfon2lem6 34363* | Lemma for dfon2 34367. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ ((Tr 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑧((𝑧 ⊊ 𝑥 ∧ Tr 𝑧) → 𝑧 ∈ 𝑥)) → ∀𝑦((𝑦 ⊊ 𝑆 ∧ Tr 𝑦) → 𝑦 ∈ 𝑆)) | ||
Theorem | dfon2lem7 34364* | Lemma for dfon2 34367. All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | ||
Theorem | dfon2lem8 34365* | Lemma for dfon2 34367. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) → (∀𝑧((𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧) → 𝑧 ∈ ∩ 𝐴) ∧ ∩ 𝐴 ∈ 𝐴)) | ||
Theorem | dfon2lem9 34366* | Lemma for dfon2 34367. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → E Fr 𝐴) | ||
Theorem | dfon2 34367* | On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.) |
⊢ On = {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} | ||
Theorem | rdgprc0 34368 | The value of the recursive definition generator at ∅ when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅) | ||
Theorem | rdgprc 34369 | The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (¬ 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) | ||
Theorem | dfrdg2 34370* | Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐼 ∈ 𝑉 → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) | ||
Theorem | dfrdg3 34371* | Generalization of dfrdg2 34370 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} | ||
Theorem | axextdfeq 34372 | A version of ax-ext 2707 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) | ||
Theorem | ax8dfeq 34373 | A version of ax-8 2108 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦)) | ||
Theorem | axextdist 34374 | ax-ext 2707 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | ||
Theorem | axextbdist 34375 | axextb 2710 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) | ||
Theorem | 19.12b 34376* | Version of 19.12vv 2343 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | ||
Theorem | exnel 34377 | There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 | ||
Theorem | distel 34378 | Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5394 and elirrv 9532.) (Contributed by Scott Fenton, 15-Dec-2010.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | ||
Theorem | axextndbi 34379 | axextnd 10527 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.) |
⊢ ∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | hbntg 34380 | A more general form of hbnt 2290. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbimtg 34381 | A more general and closed form of hbim 2295. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) | ||
Theorem | hbaltg 34382 | A more general and closed form of hbal 2167. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜓)) | ||
Theorem | hbng 34383 | A more general form of hbn 2291. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜑) | ||
Theorem | hbimg 34384 | A more general form of hbim 2295. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (𝜑 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜃) ⇒ ⊢ ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃)) | ||
Syntax | cwsuc 34385 | Declare the syntax for well-founded successor. |
class wsuc(𝑅, 𝐴, 𝑋) | ||
Syntax | cwlim 34386 | Declare the syntax for well-founded limit class. |
class WLim(𝑅, 𝐴) | ||
Definition | df-wsuc 34387 | Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | ||
Definition | df-wlim 34388* | Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | ||
Theorem | wsuceq123 34389 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) | ||
Theorem | wsuceq1 34390 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) | ||
Theorem | wsuceq2 34391 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋)) | ||
Theorem | wsuceq3 34392 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) | ||
Theorem | nfwsuc 34393 | Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 ⇒ ⊢ Ⅎ𝑥wsuc(𝑅, 𝐴, 𝑋) | ||
Theorem | wlimeq12 34394 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) | ||
Theorem | wlimeq1 34395 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
⊢ (𝑅 = 𝑆 → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐴)) | ||
Theorem | wlimeq2 34396 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | ||
Theorem | nfwlim 34397 | Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) | ||
Theorem | elwlim 34398 | Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) | ||
Theorem | wzel 34399 | The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴) | ||
Theorem | wsuclem 34400* | Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |