HomeHome Metamath Proof Explorer
Theorem List (p. 344 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 34301-34400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeliminable3a 34301* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧𝑦))
 
Theoremeliminable3b 34302* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ {𝑦𝜓} ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧 ∈ {𝑦𝜓}))
 
Theoremeliminable-velab 34303 A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
 
Theoremeliminable-veqab 34304* A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥 ↔ [𝑧 / 𝑦]𝜑))
 
Theoremeliminable-abeqv 34305* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024.) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧𝑦))
 
Theoremeliminable-abeqab 34306* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓))
 
Theoremeliminable-abelv 34307* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧𝑦))
 
Theoremeliminable-abelab 34308* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ {𝑦𝜓} ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ [𝑧 / 𝑦]𝜓))
 
20.15.5.2  Classes without the axiom of extensionality

A few results about classes can be proved without using ax-ext 2770. One could move all theorems from cab 2776 to df-clel 2870 (except for dfcleq 2792 and cvjust 2793) in a subsection "Classes" before the subsection on the axiom of extensionality, together with the theorems below. In that subsection, the last statement should be df-cleq 2791.

Note that without ax-ext 2770, the $a-statements df-clab 2777, df-cleq 2791, and df-clel 2870 are no longer eliminable (see previous section) (but PROBABLY df-clab 2777 is still conservative , while df-cleq 2791 and df-clel 2870 are not). This is not a reason not to study what is provable with them but without ax-ext 2770, in order to gauge their strengths more precisely.

Before that subsection, a subsection "The membership predicate" could group the statements with that are currently in the FOL part (including wcel 2111, wel 2112, ax-8 2113, ax-9 2121).

Remark: the weakening of eleq1 2877 / eleq2 2878 to eleq1w 2872 / eleq2w 2873 can also be done with eleq1i 2880, eqeltri 2886, eqeltrri 2887, eleq1a 2885, eleq1d 2874, eqeltrd 2890, eqeltrrd 2891, eqneltrd 2909, eqneltrrd 2910, nelneq 2914.

Remark: possibility to remove dependency on ax-10 2142, ax-11 2158, ax-13 2379 from nfcri 2943 and theorems using it if one adds a disjoint variable condition (that theorem is typically used with dummy variables, so the disjoint variable condition addition is not very restrictive), and then shorten nfnfc 2967.

 
Theorembj-denoteslem 34309* Lemma for bj-denotes 34310. (Contributed by BJ, 24-Apr-2024.)
(∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-denotes 34310* This would be the justification theorem for the definition of the unary predicate "E!" by ( E! 𝐴 ↔ ∃𝑥𝑥 = 𝐴) which could be interpreted as "𝐴 exists" (as a set) or "𝐴 denotes" (in the sense of free logic).

A shorter proof using bitri 278 (to add an intermediate proposition 𝑧𝑧 = 𝐴 with a fresh 𝑧), cbvexvw 2044, and eqeq1 2802, requires the core axioms and { ax-9 2121, ax-ext 2770, df-cleq 2791 } whereas this proof requires the core axioms and { ax-8 2113, df-clab 2777, df-clel 2870 }.

Theorem bj-issetwt 34313 proves that "existing" is equivalent to being a member of a class abstraction. It also requires, with the present proof, { ax-8 2113, df-clab 2777, df-clel 2870 } (whereas with the shorter proof from cbvexvw 2044 and eqeq1 2802 it would require { ax-8 2113, ax-9 2121, ax-ext 2770, df-clab 2777, df-cleq 2791, df-clel 2870 }). That every class is equal to a class abstraction is proved by abid1 2931, which requires { ax-8 2113, ax-9 2121, ax-ext 2770, df-clab 2777, df-cleq 2791, df-clel 2870 }.

Note that there is no disjoint variable condition on 𝑥, 𝑦 but the theorem does not depend on ax-13 2379. Actually, the proof depends only on the logical axioms ax-1 6 through ax-7 2015 and sp 2180.

The symbol "E!" was chosen to be reminiscent of the analogous predicate in (inclusive or non-inclusive) free logic, which deals with the possibility of nonexistent objects. This analogy should not be taken too far, since here there are no equality axioms for classes: these are derived from ax-ext 2770 and df-cleq 2791 (e.g., eqid 2798 and eqeq1 2802). In particular, one cannot even prove 𝑥𝑥 = 𝐴𝐴 = 𝐴 without ax-ext 2770 and df-cleq 2791.

(Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)

(∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-issettru 34311* Weak version of isset 3453 without ax-ext 2770. (Contributed by BJ, 24-Apr-2024.)
(∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-elabtru 34312 This is as close as we can get to proving extensionality for "the" "universal" class without ax-ext 2770. (Contributed by BJ, 24-Apr-2024.)
(𝐴 ∈ {𝑥 ∣ ⊤} ↔ 𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-issetwt 34313* Closed form of bj-issetw 34314. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴))
 
Theorembj-issetw 34314* The closest one can get to isset 3453 without using ax-ext 2770. See also vexw 2782. Note that the only disjoint variable condition is between 𝑦 and 𝐴. From there, one can prove isset 3453 using eleq2i 2881 (which requires ax-ext 2770 and df-cleq 2791). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
𝜑       (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-elissetv 34315* Version of bj-elisset 34316 with a disjoint variable condition on 𝑥, 𝑉. This proof uses only df-ex 1782, ax-gen 1797, ax-4 1811 and df-clel 2870 on top of propositional calculus. Prefer its use over bj-elisset 34316 when sufficient. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theorembj-elisset 34316* Remove from elisset 3452 dependency on ax-ext 2770 (and on df-cleq 2791 and df-v 3443). This proof uses only df-clab 2777 and df-clel 2870 on top of first-order logic. It only requires ax-1--7 and sp 2180. Use bj-elissetv 34315 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theorembj-issetiv 34317* Version of bj-isseti 34318 with a disjoint variable condition on 𝑥, 𝑉. This proof uses only df-ex 1782, ax-gen 1797, ax-4 1811 and df-clel 2870 on top of propositional calculus. Prefer its use over bj-isseti 34318 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-isseti 34318* Remove from isseti 3455 dependency on ax-ext 2770 (and on df-cleq 2791 and df-v 3443). This proof uses only df-clab 2777 and df-clel 2870 on top of first-order logic. It only uses ax-12 2175 among the auxiliary logical axioms. The hypothesis uses 𝑉 instead of V for extra generality. This is indeed more general as long as elex 3459 is not available. Use bj-issetiv 34317 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-ralvw 34319 A weak version of ralv 3466 not using ax-ext 2770 (nor df-cleq 2791, df-clel 2870, df-v 3443), and only core FOL axioms. See also bj-rexvw 34320. The analogues for reuv 3468 and rmov 3469 are not proved. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∀𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-rexvw 34320 A weak version of rexv 3467 not using ax-ext 2770 (nor df-cleq 2791, df-clel 2870, df-v 3443), and only core FOL axioms. See also bj-ralvw 34319. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∃𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-rababw 34321 A weak version of rabab 3470 not using df-clel 2870 nor df-v 3443 (but requiring ax-ext 2770) nor ax-12 2175. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}
 
Theorembj-rexcom4bv 34322* Version of rexcom4b 3471 and bj-rexcom4b 34323 with a disjoint variable condition on 𝑥, 𝑉, hence removing dependency on df-sb 2070 and df-clab 2777 (so that it depends on df-clel 2870 and df-rex 3112 only on top of first-order logic). Prefer its use over bj-rexcom4b 34323 when sufficient (in particular when 𝑉 is substituted for V). Note the 𝑉 in the hypothesis instead of V. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-rexcom4b 34323* Remove from rexcom4b 3471 dependency on ax-ext 2770 and ax-13 2379 (and on df-or 845, df-cleq 2791, df-nfc 2938, df-v 3443). The hypothesis uses 𝑉 instead of V (see bj-isseti 34318 for the motivation). Use bj-rexcom4bv 34322 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-ceqsalt0 34324 The FOL content of ceqsalt 3474. Lemma for bj-ceqsalt 34326 and bj-ceqsaltv 34327. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜃 → (𝜑𝜓)) ∧ ∃𝑥𝜃) → (∀𝑥(𝜃𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt1 34325 The FOL content of ceqsalt 3474. Lemma for bj-ceqsalt 34326 and bj-ceqsaltv 34327. TODO: consider removing if it does not add anything to bj-ceqsalt0 34324. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
(𝜃 → ∃𝑥𝜒)       ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑𝜓)) ∧ 𝜃) → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt 34326* Remove from ceqsalt 3474 dependency on ax-ext 2770 (and on df-cleq 2791 and df-v 3443). Note: this is not doable with ceqsralt 3475 (or ceqsralv 3480), which uses eleq1 2877, but the same dependence removal is possible for ceqsalg 3476, ceqsal 3478, ceqsalv 3479, cgsexg 3484, cgsex2g 3485, cgsex4g 3486, ceqsex 3488, ceqsexv 3489, ceqsex2 3491, ceqsex2v 3492, ceqsex3v 3493, ceqsex4v 3494, ceqsex6v 3495, ceqsex8v 3496, gencbvex 3497 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3498, gencbval 3499, vtoclgft 3501 (it uses , whose justification nfcjust 2937 does not use ax-ext 2770) and several other vtocl* theorems (see for instance bj-vtoclg1f 34358). See also bj-ceqsaltv 34327. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsaltv 34327* Version of bj-ceqsalt 34326 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2070 and df-clab 2777. Prefer its use over bj-ceqsalt 34326 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg0 34328 The FOL content of ceqsalg 3476. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))       (∃𝑥𝜒 → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg 34329* Remove from ceqsalg 3476 dependency on ax-ext 2770 (and on df-cleq 2791 and df-v 3443). See also bj-ceqsalgv 34331. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgALT 34330* Alternate proof of bj-ceqsalg 34329. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgv 34331* Version of bj-ceqsalg 34329 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2070 and df-clab 2777. Prefer its use over bj-ceqsalg 34329 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgvALT 34332* Alternate proof of bj-ceqsalgv 34331. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsal 34333* Remove from ceqsal 3478 dependency on ax-ext 2770 (and on df-cleq 2791, df-v 3443, df-clab 2777, df-sb 2070). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-ceqsalv 34334* Remove from ceqsalv 3479 dependency on ax-ext 2770 (and on df-cleq 2791, df-v 3443, df-clab 2777, df-sb 2070). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-spcimdv 34335* Remove from spcimdv 3540 dependency on ax-9 2121, ax-10 2142, ax-11 2158, ax-13 2379, ax-ext 2770, df-cleq 2791 (and df-nfc 2938, df-v 3443, df-or 845, df-tru 1541, df-nf 1786). For an even more economical version, see bj-spcimdvv 34336. (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theorembj-spcimdvv 34336* Remove from spcimdv 3540 dependency on ax-7 2015, ax-8 2113, ax-10 2142, ax-11 2158, ax-12 2175 ax-13 2379, ax-ext 2770, df-cleq 2791, df-clab 2777 (and df-nfc 2938, df-v 3443, df-or 845, df-tru 1541, df-nf 1786) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 34335. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
20.15.5.3  Characterization among sets versus among classes
 
Theoremelelb 34337 Equivalence between two common ways to characterize elements of a class 𝐵: the LHS says that sets are elements of 𝐵 if and only if they satisfy 𝜑 while the RHS says that classes are elements of 𝐵 if and only if they are sets and satisfy 𝜑. Therefore, the LHS is a characterization among sets while the RHS is a characterization among classes. Note that the LHS is often formulated using a class variable instead of the universe V while this is not possible for the RHS (apart from using 𝐵 itself, which would not be very useful). (Contributed by BJ, 26-Feb-2023.)
((𝐴 ∈ V → (𝐴𝐵𝜑)) ↔ (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜑)))
 
Theorembj-pwvrelb 34338 Characterization of the elements of the powerclass of the cartesian square of the universal class: they are exactly the sets which are binary relations. (Contributed by BJ, 16-Dec-2023.)
(𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴))
 
20.15.5.4  The nonfreeness quantifier for classes

In this section, we prove the symmetry of the nonfreeness quantifier for classes.

 
Theorembj-nfcsym 34339 The nonfreeness quantifier for classes defines a symmetric binary relation on var metavariables (irreflexivity is proved by nfnid 5241 with additional axioms; see also nfcv 2955). This could be proved from aecom 2438 and nfcvb 5242 but the latter requires a domain with at least two objects (hence uses extra axioms). (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid use of eqcomd 2804 instead of equcomd 2026; removing dependency on ax-ext 2770 is possible: prove weak versions (i.e. replace classes with setvars) of drnfc1 2974, eleq2d 2875 (using elequ2 2126), nfcvf 2981, dvelimc 2980, dvelimdc 2979, nfcvf2 2982. (Proof modification is discouraged.)
(𝑥𝑦𝑦𝑥)
 
20.15.5.5  Proposal for the definitions of class membership and class equality

Note: now that the proposals have been adopted as df-cleq 2791 and df-clel 2870, and that ax9ALT 2794 is in the main section, we only keep bj-ax9 34340 here as a weaker version of ax9ALT 2794 proved without ax-8 2113.

 
Theorembj-ax9 34340* Proof of ax-9 2121 from Tarski's FOL=, sp 2180, dfcleq 2792 and ax-ext 2770 (with two extra disjoint variable conditions on 𝑥, 𝑧 and 𝑦, 𝑧). See ax9ALT 2794 for a more general version, proved using also ax-8 2113. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
 
20.15.5.6  Lemmas for class substitution

Some useful theorems for dealing with substitutions: sbbi 2313, sbcbig 3770, sbcel1g 4321, sbcel2 4323, sbcel12 4316, sbceqg 4317, csbvarg 4339.

 
Theorembj-sbeqALT 34341* Substitution in an equality (use the more general version bj-sbeq 34342 instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbeq 34342 Distribute proper substitution through an equality relation. (See sbceqg 4317). (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbceqgALT 34343 Distribute proper substitution through an equality relation. Alternate proof of sbceqg 4317. (Contributed by BJ, 6-Oct-2018.) Proof modification is discouraged to avoid using sbceqg 4317, but the Metamath program "MM-PA> MINIMIZE_WITH * / EXCEPT sbceqg" command is ok. (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theorembj-csbsnlem 34344* Lemma for bj-csbsn 34345 (in this lemma, 𝑥 cannot occur in 𝐴). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-csbsn 34345 Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-sbel1 34346* Version of sbcel1g 4321 when substituting a set. (Note: one could have a corresponding version of sbcel12 4316 when substituting a set, but the point here is that the antecedent of sbcel1g 4321 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
 
Theorembj-abv 34347 The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → {𝑥𝜑} = V)
 
Theorembj-ab0 34348 The class of sets verifying a falsity is the empty set (closed form of abf 4310). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
 
Theorembj-abf 34349 Shorter proof of abf 4310 (which should be kept as abfALT). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
¬ 𝜑       {𝑥𝜑} = ∅
 
Theorembj-csbprc 34350 More direct proof of csbprc 4313 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
 
20.15.5.7  Removing some axiom requirements and disjoint variable conditions
 
Theorembj-exlimvmpi 34351* A Fol lemma (exlimiv 1931 followed by mpi 20). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpi 34352 Lemma for bj-vtoclg1f1 34357 (an instance of this lemma is a version of bj-vtoclg1f1 34357 where 𝑥 and 𝑦 are identified). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbi 34353 Lemma for theorems of the vtoclg 3515 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbir 34354 Lemma for theorems of the vtoclg 3515 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   (𝜒 → (𝜑𝜓))    &   𝜓       (∃𝑥𝜒𝜑)
 
Theorembj-vtoclf 34355* Remove dependency on ax-ext 2770, df-clab 2777 and df-cleq 2791 (and df-sb 2070 and df-v 3443) from vtoclf 3506. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtocl 34356* Remove dependency on ax-ext 2770, df-clab 2777 and df-cleq 2791 (and df-sb 2070 and df-v 3443) from vtocl 3507. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtoclg1f1 34357* The FOL content of vtoclg1f 3514 (hence not using ax-ext 2770, df-cleq 2791, df-nfc 2938, df-v 3443). Note the weakened "major" hypothesis and the disjoint variable condition between 𝑥 and 𝐴 (needed since the nonfreeness quantifier for classes is not available without ax-ext 2770; as a byproduct, this dispenses with ax-11 2158 and ax-13 2379). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (∃𝑦 𝑦 = 𝐴𝜓)
 
Theorembj-vtoclg1f 34358* Reprove vtoclg1f 3514 from bj-vtoclg1f1 34357. This removes dependency on ax-ext 2770, df-cleq 2791 and df-v 3443. Use bj-vtoclg1fv 34359 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-vtoclg1fv 34359* Version of bj-vtoclg1f 34358 with a disjoint variable condition on 𝑥, 𝑉. This removes dependency on df-sb 2070 and df-clab 2777. Prefer its use over bj-vtoclg1f 34358 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-vtoclg 34360* A version of vtoclg 3515 with an additional disjoint variable condition (which is removable if we allow use of df-clab 2777, see bj-vtoclg1f 34358), which requires fewer axioms (i.e., removes dependency on ax-6 1970, ax-7 2015, ax-9 2121, ax-12 2175, ax-ext 2770, df-clab 2777, df-cleq 2791, df-v 3443). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-rabbida2 34361 Version of rabbidva2 3423 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-rabeqd 34362 Deduction form of rabeq 3431. Note that contrary to rabeq 3431 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
 
Theorembj-rabeqbid 34363 Version of rabeqbidv 3433 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-rabeqbida 34364 Version of rabeqbidva 3434 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-seex 34365* Version of seex 5482 with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019.)
𝑥𝐵       ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
 
Theorembj-nfcf 34366* Version of df-nfc 2938 with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 2-May-2019.)
𝑦𝐴       (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
 
Theorembj-zfauscl 34367* General version of zfauscl 5169.

Remark: the comment in zfauscl 5169 is misleading: the essential use of ax-ext 2770 is the one via eleq2 2878 and not the one via vtocl 3507, since the latter can be proved without ax-ext 2770 (see bj-vtoclg 34360).

(Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)

(𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
 
20.15.5.8  Class abstractions

A few additional theorems on class abstractions and restricted class abstractions.

 
Theorembj-unrab 34368* Generalization of unrab 4226. Equality need not hold. (Contributed by BJ, 21-Apr-2019.)
({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜓}) ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
 
Theorembj-inrab 34369 Generalization of inrab 4227. (Contributed by BJ, 21-Apr-2019.)
({𝑥𝐴𝜑} ∩ {𝑥𝐵𝜓}) = {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
 
Theorembj-inrab2 34370 Shorter proof of inrab 4227. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theorembj-inrab3 34371* Generalization of dfrab3ss 4233, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.)
(𝐴 ∩ {𝑥𝐵𝜑}) = ({𝑥𝐴𝜑} ∩ 𝐵)
 
Theorembj-rabtr 34372* Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
Theorembj-rabtrALT 34373* Alternate proof of bj-rabtr 34372. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
Theorembj-rabtrAUTO 34374* Proof of bj-rabtr 34372 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
20.15.5.9  Restricted nonfreeness

In this subsection, we define restricted nonfreeness (or relative nonfreeness).

 
Syntaxwrnf 34375 Syntax for restricted nonfreeness.
wff 𝑥𝐴𝜑
 
Definitiondf-bj-rnf 34376 Definition of restricted nonfreeness. Informally, the proposition 𝑥𝐴𝜑 means that 𝜑(𝑥) does not vary on 𝐴. (Contributed by BJ, 19-Mar-2021.)
(Ⅎ𝑥𝐴𝜑 ↔ (∃𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜑))
 
20.15.5.10  Russell's paradox

A few results around Russell's paradox. For clarity, we prove separately its FOL part (bj-ru0 34377) and then two versions (bj-ru1 34378 and bj-ru 34379). Special attention is put on minimizing axiom depencencies.

 
Theorembj-ru0 34377* The FOL part of Russell's paradox ru 3719 (see also bj-ru1 34378, bj-ru 34379). Use of elequ1 2118, bj-elequ12 34125 (instead of eleq1 2877, eleq12d 2884 as in ru 3719) permits to remove dependency on ax-10 2142, ax-11 2158, ax-12 2175, ax-ext 2770, df-sb 2070, df-clab 2777, df-cleq 2791, df-clel 2870. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
 
Theorembj-ru1 34378* A version of Russell's paradox ru 3719 (see also bj-ru 34379). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
 
Theorembj-ru 34379 Remove dependency on ax-13 2379 (and df-v 3443) from Russell's paradox ru 3719 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of bj-elissetv 34315 instead of isset 3453 to avoid use of df-v 3443. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ {𝑥 ∣ ¬ 𝑥𝑥} ∈ 𝑉
 
20.15.5.11  Curry's paradox in set theory
 
Theoremcurrysetlem 34380* Lemma for currysetlem 34380, where it is used with (𝑥𝑥𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
({𝑥𝜓} ∈ 𝑉 → ({𝑥𝜓} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ ({𝑥𝜓} ∈ {𝑥𝜓} → 𝜑)))
 
Theoremcurryset 34381* Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is . See alternate exposal of basically the same proof currysetALT 34385. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
 
Theoremcurrysetlem1 34382* Lemma for currysetALT 34385. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}       (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
 
Theoremcurrysetlem2 34383* Lemma for currysetALT 34385. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}       (𝑋𝑉 → (𝑋𝑋𝜑))
 
Theoremcurrysetlem3 34384* Lemma for currysetALT 34385. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}        ¬ 𝑋𝑉
 
TheoremcurrysetALT 34385* Alternate proof of curryset 34381, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.)
¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
 
20.15.5.12  Some disjointness results

A few utility theorems on disjointness of classes.

 
Theorembj-n0i 34386* Inference associated with n0 4260. Shortens 2ndcdisj 22061 (2888>2878), notzfaus 5227 (264>253). (Contributed by BJ, 22-Apr-2019.)
𝐴 ≠ ∅       𝑥 𝑥𝐴
 
Theorembj-disjcsn 34387 A class is disjoint from its singleton. A consequence of regularity. Shorter proof than bnj521 32117 and does not depend on df-ne 2988. (Contributed by BJ, 4-Apr-2019.)
(𝐴 ∩ {𝐴}) = ∅
 
Theorembj-disjsn01 34388 Disjointness of the singletons containing 0 and 1. This is a consequence of bj-disjcsn 34387 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.)
({∅} ∩ {1o}) = ∅
 
Theorembj-0nel1 34389 The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
∅ ∉ {1o}
 
Theorembj-1nel0 34390 1o does not belong to {∅}. (Contributed by BJ, 6-Apr-2019.)
1o ∉ {∅}
 
20.15.5.13  Complements on direct products

A few utility theorems on direct products.

 
Theorembj-xpimasn 34391 The image of a singleton, general case. [Change and relabel xpimasn 6009 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)
 
Theorembj-xpima1sn 34392 The image of a singleton by a direct product, empty case. [Change and relabel xpimasn 6009 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
 
Theorembj-xpima1snALT 34393 Alternate proof of bj-xpima1sn 34392. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
 
Theorembj-xpima2sn 34394 The image of a singleton by a direct product, nonempty case. [To replace xpimasn 6009.] (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.)
(𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
 
Theorembj-xpnzex 34395 If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7607 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
(𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
 
Theorembj-xpexg2 34396 Curried (exported) form of xpexg 7453. (Contributed by BJ, 2-Apr-2019.)
(𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))
 
Theorembj-xpnzexb 34397 If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.)
(𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V))
 
Theorembj-cleq 34398* Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.)
(𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
 
20.15.5.14  "Singletonization" and tagging

This subsection introduces the "singletonization" and the "tagging" of a class. The singletonization of a class is the class of singletons of elements of that class. It is useful since all nonsingletons are disjoint from it, so one can easily adjoin to it disjoint elements, which is what the tagging does: it adjoins the empty set. This can be used for instance to define the one-point compactification of a topological space. It will be used in the next section to define tuples which work for proper classes.

 
Theorembj-snsetex 34399* The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep 5154. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
 
Theorembj-clex 34400* Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.)
(𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >