|   | Mathbox for Mario Carneiro | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-fmla | Structured version Visualization version GIF version | ||
| Description: Define the predicate which defines the set of valid Godel formulas. The parameter 𝑛 defines the maximum height of the formulas: the set (Fmla‘∅) is all formulas of the form 𝑥 ∈ 𝑦 (which in our coding scheme is the set ({∅} × (ω × ω)); see df-sat 35349 for the full coding scheme), see fmla0 35388, and each extra level adds to the complexity of the formulas in (Fmla‘𝑛), see fmlasuc 35392. Remark: it is sufficient to have atomic formulas of the form 𝑥 ∈ 𝑦 only, because equations (formulas of the form 𝑥 = 𝑦), which are required as (atomic) formulas, can be introduced as a defined notion in terms of ∈𝑔, see df-goeq 35450. (Fmla‘ω) = ∪ 𝑛 ∈ ω(Fmla‘𝑛) is the set of all valid formulas, see fmla 35387. (Contributed by Mario Carneiro, 14-Jul-2013.) | 
| Ref | Expression | 
|---|---|
| df-fmla | ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cfmla 35343 | . 2 class Fmla | |
| 2 | vn | . . 3 setvar 𝑛 | |
| 3 | com 7888 | . . . 4 class ω | |
| 4 | 3 | csuc 6385 | . . 3 class suc ω | 
| 5 | 2 | cv 1538 | . . . . 5 class 𝑛 | 
| 6 | c0 4332 | . . . . . 6 class ∅ | |
| 7 | csat 35342 | . . . . . 6 class Sat | |
| 8 | 6, 6, 7 | co 7432 | . . . . 5 class (∅ Sat ∅) | 
| 9 | 5, 8 | cfv 6560 | . . . 4 class ((∅ Sat ∅)‘𝑛) | 
| 10 | 9 | cdm 5684 | . . 3 class dom ((∅ Sat ∅)‘𝑛) | 
| 11 | 2, 4, 10 | cmpt 5224 | . 2 class (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | 
| 12 | 1, 11 | wceq 1539 | 1 wff Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: fmlafv 35386 fmla 35387 fmlasuc0 35390 | 
| Copyright terms: Public domain | W3C validator |