Detailed syntax breakdown of Definition df-selv
| Step | Hyp | Ref
| Expression |
| 1 | | cslv 22132 |
. 2
class
selectVars |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vj |
. . . 4
setvar 𝑗 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑖 |
| 7 | 6 | cpw 4600 |
. . . 4
class 𝒫
𝑖 |
| 8 | | vf |
. . . . 5
setvar 𝑓 |
| 9 | 3 | cv 1539 |
. . . . . . 7
class 𝑟 |
| 10 | | cmpl 21926 |
. . . . . . 7
class
mPoly |
| 11 | 6, 9, 10 | co 7431 |
. . . . . 6
class (𝑖 mPoly 𝑟) |
| 12 | | cbs 17247 |
. . . . . 6
class
Base |
| 13 | 11, 12 | cfv 6561 |
. . . . 5
class
(Base‘(𝑖 mPoly
𝑟)) |
| 14 | | vu |
. . . . . 6
setvar 𝑢 |
| 15 | 5 | cv 1539 |
. . . . . . . 8
class 𝑗 |
| 16 | 6, 15 | cdif 3948 |
. . . . . . 7
class (𝑖 ∖ 𝑗) |
| 17 | 16, 9, 10 | co 7431 |
. . . . . 6
class ((𝑖 ∖ 𝑗) mPoly 𝑟) |
| 18 | | vt |
. . . . . . 7
setvar 𝑡 |
| 19 | 14 | cv 1539 |
. . . . . . . 8
class 𝑢 |
| 20 | 15, 19, 10 | co 7431 |
. . . . . . 7
class (𝑗 mPoly 𝑢) |
| 21 | | vc |
. . . . . . . 8
setvar 𝑐 |
| 22 | 18 | cv 1539 |
. . . . . . . . 9
class 𝑡 |
| 23 | | cascl 21872 |
. . . . . . . . 9
class
algSc |
| 24 | 22, 23 | cfv 6561 |
. . . . . . . 8
class
(algSc‘𝑡) |
| 25 | | vd |
. . . . . . . . 9
setvar 𝑑 |
| 26 | 21 | cv 1539 |
. . . . . . . . . 10
class 𝑐 |
| 27 | 19, 23 | cfv 6561 |
. . . . . . . . . 10
class
(algSc‘𝑢) |
| 28 | 26, 27 | ccom 5689 |
. . . . . . . . 9
class (𝑐 ∘ (algSc‘𝑢)) |
| 29 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 30 | 29, 5 | wel 2109 |
. . . . . . . . . . . 12
wff 𝑥 ∈ 𝑗 |
| 31 | 29 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑥 |
| 32 | | cmvr 21925 |
. . . . . . . . . . . . . 14
class
mVar |
| 33 | 15, 19, 32 | co 7431 |
. . . . . . . . . . . . 13
class (𝑗 mVar 𝑢) |
| 34 | 31, 33 | cfv 6561 |
. . . . . . . . . . . 12
class ((𝑗 mVar 𝑢)‘𝑥) |
| 35 | 16, 9, 32 | co 7431 |
. . . . . . . . . . . . . 14
class ((𝑖 ∖ 𝑗) mVar 𝑟) |
| 36 | 31, 35 | cfv 6561 |
. . . . . . . . . . . . 13
class (((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥) |
| 37 | 36, 26 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)) |
| 38 | 30, 34, 37 | cif 4525 |
. . . . . . . . . . 11
class if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))) |
| 39 | 29, 6, 38 | cmpt 5225 |
. . . . . . . . . 10
class (𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))) |
| 40 | 25 | cv 1539 |
. . . . . . . . . . . 12
class 𝑑 |
| 41 | 8 | cv 1539 |
. . . . . . . . . . . 12
class 𝑓 |
| 42 | 40, 41 | ccom 5689 |
. . . . . . . . . . 11
class (𝑑 ∘ 𝑓) |
| 43 | 40 | crn 5686 |
. . . . . . . . . . . 12
class ran 𝑑 |
| 44 | | ces 22096 |
. . . . . . . . . . . . 13
class
evalSub |
| 45 | 6, 22, 44 | co 7431 |
. . . . . . . . . . . 12
class (𝑖 evalSub 𝑡) |
| 46 | 43, 45 | cfv 6561 |
. . . . . . . . . . 11
class ((𝑖 evalSub 𝑡)‘ran 𝑑) |
| 47 | 42, 46 | cfv 6561 |
. . . . . . . . . 10
class (((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓)) |
| 48 | 39, 47 | cfv 6561 |
. . . . . . . . 9
class ((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
| 49 | 25, 28, 48 | csb 3899 |
. . . . . . . 8
class
⦋(𝑐
∘ (algSc‘𝑢)) /
𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
| 50 | 21, 24, 49 | csb 3899 |
. . . . . . 7
class
⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
| 51 | 18, 20, 50 | csb 3899 |
. . . . . 6
class
⦋(𝑗
mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
| 52 | 14, 17, 51 | csb 3899 |
. . . . 5
class
⦋((𝑖
∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
| 53 | 8, 13, 52 | cmpt 5225 |
. . . 4
class (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))) |
| 54 | 5, 7, 53 | cmpt 5225 |
. . 3
class (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))))) |
| 55 | 2, 3, 4, 4, 54 | cmpo 7433 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) |
| 56 | 1, 55 | wceq 1540 |
1
wff selectVars
= (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) |