Step | Hyp | Ref
| Expression |
1 | | cslv 21891 |
. 2
class
selectVars |
2 | | vi |
. . 3
setvar π |
3 | | vr |
. . 3
setvar π |
4 | | cvv 3473 |
. . 3
class
V |
5 | | vj |
. . . 4
setvar π |
6 | 2 | cv 1539 |
. . . . 5
class π |
7 | 6 | cpw 4602 |
. . . 4
class π«
π |
8 | | vf |
. . . . 5
setvar π |
9 | 3 | cv 1539 |
. . . . . . 7
class π |
10 | | cmpl 21679 |
. . . . . . 7
class
mPoly |
11 | 6, 9, 10 | co 7412 |
. . . . . 6
class (π mPoly π) |
12 | | cbs 17149 |
. . . . . 6
class
Base |
13 | 11, 12 | cfv 6543 |
. . . . 5
class
(Baseβ(π mPoly
π)) |
14 | | vu |
. . . . . 6
setvar π’ |
15 | 5 | cv 1539 |
. . . . . . . 8
class π |
16 | 6, 15 | cdif 3945 |
. . . . . . 7
class (π β π) |
17 | 16, 9, 10 | co 7412 |
. . . . . 6
class ((π β π) mPoly π) |
18 | | vt |
. . . . . . 7
setvar π‘ |
19 | 14 | cv 1539 |
. . . . . . . 8
class π’ |
20 | 15, 19, 10 | co 7412 |
. . . . . . 7
class (π mPoly π’) |
21 | | vc |
. . . . . . . 8
setvar π |
22 | 18 | cv 1539 |
. . . . . . . . 9
class π‘ |
23 | | cascl 21627 |
. . . . . . . . 9
class
algSc |
24 | 22, 23 | cfv 6543 |
. . . . . . . 8
class
(algScβπ‘) |
25 | | vd |
. . . . . . . . 9
setvar π |
26 | 21 | cv 1539 |
. . . . . . . . . 10
class π |
27 | 19, 23 | cfv 6543 |
. . . . . . . . . 10
class
(algScβπ’) |
28 | 26, 27 | ccom 5680 |
. . . . . . . . 9
class (π β (algScβπ’)) |
29 | | vx |
. . . . . . . . . . 11
setvar π₯ |
30 | 29, 5 | wel 2106 |
. . . . . . . . . . . 12
wff π₯ β π |
31 | 29 | cv 1539 |
. . . . . . . . . . . . 13
class π₯ |
32 | | cmvr 21678 |
. . . . . . . . . . . . . 14
class
mVar |
33 | 15, 19, 32 | co 7412 |
. . . . . . . . . . . . 13
class (π mVar π’) |
34 | 31, 33 | cfv 6543 |
. . . . . . . . . . . 12
class ((π mVar π’)βπ₯) |
35 | 16, 9, 32 | co 7412 |
. . . . . . . . . . . . . 14
class ((π β π) mVar π) |
36 | 31, 35 | cfv 6543 |
. . . . . . . . . . . . 13
class (((π β π) mVar π)βπ₯) |
37 | 36, 26 | cfv 6543 |
. . . . . . . . . . . 12
class (πβ(((π β π) mVar π)βπ₯)) |
38 | 30, 34, 37 | cif 4528 |
. . . . . . . . . . 11
class if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯))) |
39 | 29, 6, 38 | cmpt 5231 |
. . . . . . . . . 10
class (π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯)))) |
40 | 25 | cv 1539 |
. . . . . . . . . . . 12
class π |
41 | 8 | cv 1539 |
. . . . . . . . . . . 12
class π |
42 | 40, 41 | ccom 5680 |
. . . . . . . . . . 11
class (π β π) |
43 | 40 | crn 5677 |
. . . . . . . . . . . 12
class ran π |
44 | | ces 21853 |
. . . . . . . . . . . . 13
class
evalSub |
45 | 6, 22, 44 | co 7412 |
. . . . . . . . . . . 12
class (π evalSub π‘) |
46 | 43, 45 | cfv 6543 |
. . . . . . . . . . 11
class ((π evalSub π‘)βran π) |
47 | 42, 46 | cfv 6543 |
. . . . . . . . . 10
class (((π evalSub π‘)βran π)β(π β π)) |
48 | 39, 47 | cfv 6543 |
. . . . . . . . 9
class ((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯))))) |
49 | 25, 28, 48 | csb 3893 |
. . . . . . . 8
class
β¦(π
β (algScβπ’)) /
πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯))))) |
50 | 21, 24, 49 | csb 3893 |
. . . . . . 7
class
β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯))))) |
51 | 18, 20, 50 | csb 3893 |
. . . . . 6
class
β¦(π
mPoly π’) / π‘β¦β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯))))) |
52 | 14, 17, 51 | csb 3893 |
. . . . 5
class
β¦((π
β π) mPoly π) / π’β¦β¦(π mPoly π’) / π‘β¦β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯))))) |
53 | 8, 13, 52 | cmpt 5231 |
. . . 4
class (π β (Baseβ(π mPoly π)) β¦ β¦((π β π) mPoly π) / π’β¦β¦(π mPoly π’) / π‘β¦β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯)))))) |
54 | 5, 7, 53 | cmpt 5231 |
. . 3
class (π β π« π β¦ (π β (Baseβ(π mPoly π)) β¦ β¦((π β π) mPoly π) / π’β¦β¦(π mPoly π’) / π‘β¦β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯))))))) |
55 | 2, 3, 4, 4, 54 | cmpo 7414 |
. 2
class (π β V, π β V β¦ (π β π« π β¦ (π β (Baseβ(π mPoly π)) β¦ β¦((π β π) mPoly π) / π’β¦β¦(π mPoly π’) / π‘β¦β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯)))))))) |
56 | 1, 55 | wceq 1540 |
1
wff selectVars
= (π β V, π β V β¦ (π β π« π β¦ (π β (Baseβ(π mPoly π)) β¦ β¦((π β π) mPoly π) / π’β¦β¦(π mPoly π’) / π‘β¦β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯)))))))) |