Detailed syntax breakdown of Definition df-selv
Step | Hyp | Ref
| Expression |
1 | | cslv 21228 |
. 2
class
selectVars |
2 | | vi |
. . 3
setvar 𝑖 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3422 |
. . 3
class
V |
5 | | vj |
. . . 4
setvar 𝑗 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑖 |
7 | 6 | cpw 4530 |
. . . 4
class 𝒫
𝑖 |
8 | | vf |
. . . . 5
setvar 𝑓 |
9 | 3 | cv 1538 |
. . . . . . 7
class 𝑟 |
10 | | cmpl 21019 |
. . . . . . 7
class
mPoly |
11 | 6, 9, 10 | co 7255 |
. . . . . 6
class (𝑖 mPoly 𝑟) |
12 | | cbs 16840 |
. . . . . 6
class
Base |
13 | 11, 12 | cfv 6418 |
. . . . 5
class
(Base‘(𝑖 mPoly
𝑟)) |
14 | | vu |
. . . . . 6
setvar 𝑢 |
15 | 5 | cv 1538 |
. . . . . . . 8
class 𝑗 |
16 | 6, 15 | cdif 3880 |
. . . . . . 7
class (𝑖 ∖ 𝑗) |
17 | 16, 9, 10 | co 7255 |
. . . . . 6
class ((𝑖 ∖ 𝑗) mPoly 𝑟) |
18 | | vt |
. . . . . . 7
setvar 𝑡 |
19 | 14 | cv 1538 |
. . . . . . . 8
class 𝑢 |
20 | 15, 19, 10 | co 7255 |
. . . . . . 7
class (𝑗 mPoly 𝑢) |
21 | | vc |
. . . . . . . 8
setvar 𝑐 |
22 | 18 | cv 1538 |
. . . . . . . . 9
class 𝑡 |
23 | | cascl 20969 |
. . . . . . . . 9
class
algSc |
24 | 22, 23 | cfv 6418 |
. . . . . . . 8
class
(algSc‘𝑡) |
25 | | vd |
. . . . . . . . 9
setvar 𝑑 |
26 | 21 | cv 1538 |
. . . . . . . . . 10
class 𝑐 |
27 | 19, 23 | cfv 6418 |
. . . . . . . . . 10
class
(algSc‘𝑢) |
28 | 26, 27 | ccom 5584 |
. . . . . . . . 9
class (𝑐 ∘ (algSc‘𝑢)) |
29 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
30 | 29, 5 | wel 2109 |
. . . . . . . . . . . 12
wff 𝑥 ∈ 𝑗 |
31 | 29 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑥 |
32 | | cmvr 21018 |
. . . . . . . . . . . . . 14
class
mVar |
33 | 15, 19, 32 | co 7255 |
. . . . . . . . . . . . 13
class (𝑗 mVar 𝑢) |
34 | 31, 33 | cfv 6418 |
. . . . . . . . . . . 12
class ((𝑗 mVar 𝑢)‘𝑥) |
35 | 16, 9, 32 | co 7255 |
. . . . . . . . . . . . . 14
class ((𝑖 ∖ 𝑗) mVar 𝑟) |
36 | 31, 35 | cfv 6418 |
. . . . . . . . . . . . 13
class (((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥) |
37 | 36, 26 | cfv 6418 |
. . . . . . . . . . . 12
class (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)) |
38 | 30, 34, 37 | cif 4456 |
. . . . . . . . . . 11
class if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))) |
39 | 29, 6, 38 | cmpt 5153 |
. . . . . . . . . 10
class (𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))) |
40 | 25 | cv 1538 |
. . . . . . . . . . . 12
class 𝑑 |
41 | 8 | cv 1538 |
. . . . . . . . . . . 12
class 𝑓 |
42 | 40, 41 | ccom 5584 |
. . . . . . . . . . 11
class (𝑑 ∘ 𝑓) |
43 | 40 | crn 5581 |
. . . . . . . . . . . 12
class ran 𝑑 |
44 | | ces 21190 |
. . . . . . . . . . . . 13
class
evalSub |
45 | 6, 22, 44 | co 7255 |
. . . . . . . . . . . 12
class (𝑖 evalSub 𝑡) |
46 | 43, 45 | cfv 6418 |
. . . . . . . . . . 11
class ((𝑖 evalSub 𝑡)‘ran 𝑑) |
47 | 42, 46 | cfv 6418 |
. . . . . . . . . 10
class (((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓)) |
48 | 39, 47 | cfv 6418 |
. . . . . . . . 9
class ((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
49 | 25, 28, 48 | csb 3828 |
. . . . . . . 8
class
⦋(𝑐
∘ (algSc‘𝑢)) /
𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
50 | 21, 24, 49 | csb 3828 |
. . . . . . 7
class
⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
51 | 18, 20, 50 | csb 3828 |
. . . . . 6
class
⦋(𝑗
mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
52 | 14, 17, 51 | csb 3828 |
. . . . 5
class
⦋((𝑖
∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) |
53 | 8, 13, 52 | cmpt 5153 |
. . . 4
class (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))) |
54 | 5, 7, 53 | cmpt 5153 |
. . 3
class (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))))) |
55 | 2, 3, 4, 4, 54 | cmpo 7257 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) |
56 | 1, 55 | wceq 1539 |
1
wff selectVars
= (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) |