MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-selv Structured version   Visualization version   GIF version

Definition df-selv 21895
Description: Define the "variable selection" function. The function ((𝐼 selectVars 𝑅)β€˜π½) maps elements of (𝐼 mPoly 𝑅) bijectively onto (𝐽 mPoly ((𝐼 βˆ– 𝐽) mPoly 𝑅)) in the natural way, for example if 𝐼 = {π‘₯, 𝑦} and 𝐽 = {𝑦} it would map 1 + π‘₯ + 𝑦 + π‘₯𝑦 ∈ ({π‘₯, 𝑦} mPoly β„€) to (1 + π‘₯) + (1 + π‘₯)𝑦 ∈ ({𝑦} mPoly ({π‘₯} mPoly β„€)). This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
df-selv selectVars = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))))))))
Distinct variable group:   𝑐,𝑑,𝑓,𝑖,𝑗,π‘Ÿ,𝑑,𝑒,π‘₯

Detailed syntax breakdown of Definition df-selv
StepHypRef Expression
1 cslv 21891 . 2 class selectVars
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar π‘Ÿ
4 cvv 3473 . . 3 class V
5 vj . . . 4 setvar 𝑗
62cv 1539 . . . . 5 class 𝑖
76cpw 4602 . . . 4 class 𝒫 𝑖
8 vf . . . . 5 setvar 𝑓
93cv 1539 . . . . . . 7 class π‘Ÿ
10 cmpl 21679 . . . . . . 7 class mPoly
116, 9, 10co 7412 . . . . . 6 class (𝑖 mPoly π‘Ÿ)
12 cbs 17149 . . . . . 6 class Base
1311, 12cfv 6543 . . . . 5 class (Baseβ€˜(𝑖 mPoly π‘Ÿ))
14 vu . . . . . 6 setvar 𝑒
155cv 1539 . . . . . . . 8 class 𝑗
166, 15cdif 3945 . . . . . . 7 class (𝑖 βˆ– 𝑗)
1716, 9, 10co 7412 . . . . . 6 class ((𝑖 βˆ– 𝑗) mPoly π‘Ÿ)
18 vt . . . . . . 7 setvar 𝑑
1914cv 1539 . . . . . . . 8 class 𝑒
2015, 19, 10co 7412 . . . . . . 7 class (𝑗 mPoly 𝑒)
21 vc . . . . . . . 8 setvar 𝑐
2218cv 1539 . . . . . . . . 9 class 𝑑
23 cascl 21627 . . . . . . . . 9 class algSc
2422, 23cfv 6543 . . . . . . . 8 class (algScβ€˜π‘‘)
25 vd . . . . . . . . 9 setvar 𝑑
2621cv 1539 . . . . . . . . . 10 class 𝑐
2719, 23cfv 6543 . . . . . . . . . 10 class (algScβ€˜π‘’)
2826, 27ccom 5680 . . . . . . . . 9 class (𝑐 ∘ (algScβ€˜π‘’))
29 vx . . . . . . . . . . 11 setvar π‘₯
3029, 5wel 2106 . . . . . . . . . . . 12 wff π‘₯ ∈ 𝑗
3129cv 1539 . . . . . . . . . . . . 13 class π‘₯
32 cmvr 21678 . . . . . . . . . . . . . 14 class mVar
3315, 19, 32co 7412 . . . . . . . . . . . . 13 class (𝑗 mVar 𝑒)
3431, 33cfv 6543 . . . . . . . . . . . 12 class ((𝑗 mVar 𝑒)β€˜π‘₯)
3516, 9, 32co 7412 . . . . . . . . . . . . . 14 class ((𝑖 βˆ– 𝑗) mVar π‘Ÿ)
3631, 35cfv 6543 . . . . . . . . . . . . 13 class (((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)
3736, 26cfv 6543 . . . . . . . . . . . 12 class (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))
3830, 34, 37cif 4528 . . . . . . . . . . 11 class if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)))
3929, 6, 38cmpt 5231 . . . . . . . . . 10 class (π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))))
4025cv 1539 . . . . . . . . . . . 12 class 𝑑
418cv 1539 . . . . . . . . . . . 12 class 𝑓
4240, 41ccom 5680 . . . . . . . . . . 11 class (𝑑 ∘ 𝑓)
4340crn 5677 . . . . . . . . . . . 12 class ran 𝑑
44 ces 21853 . . . . . . . . . . . . 13 class evalSub
456, 22, 44co 7412 . . . . . . . . . . . 12 class (𝑖 evalSub 𝑑)
4643, 45cfv 6543 . . . . . . . . . . 11 class ((𝑖 evalSub 𝑑)β€˜ran 𝑑)
4742, 46cfv 6543 . . . . . . . . . 10 class (((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))
4839, 47cfv 6543 . . . . . . . . 9 class ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)))))
4925, 28, 48csb 3893 . . . . . . . 8 class ⦋(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)))))
5021, 24, 49csb 3893 . . . . . . 7 class ⦋(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)))))
5118, 20, 50csb 3893 . . . . . 6 class ⦋(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)))))
5214, 17, 51csb 3893 . . . . 5 class ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)))))
538, 13, 52cmpt 5231 . . . 4 class (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))))))
545, 7, 53cmpt 5231 . . 3 class (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯)))))))
552, 3, 4, 4, 54cmpo 7414 . 2 class (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))))))))
561, 55wceq 1540 1 wff selectVars = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))))))))
Colors of variables: wff setvar class
This definition is referenced by:  selvffval  21899
  Copyright terms: Public domain W3C validator