MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvffval Structured version   Visualization version   GIF version

Theorem selvffval 22046
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvffval.i (𝜑𝐼𝑉)
selvffval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
selvffval (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
Distinct variable groups:   𝑗,𝐼,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥   𝑅,𝑗,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)   𝑉(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)   𝑊(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)

Proof of Theorem selvffval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-selv 22045 . . 3 selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))))
21a1i 11 . 2 (𝜑 → selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))))))))
3 pweq 4564 . . . . 5 (𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼)
43adantr 480 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝒫 𝑖 = 𝒫 𝐼)
5 oveq12 7355 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
65fveq2d 6826 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘(𝐼 mPoly 𝑅)))
7 difeq1 4069 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
87adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖𝑗) = (𝐼𝑗))
9 simpr 484 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑟 = 𝑅)
108, 9oveq12d 7364 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mPoly 𝑟) = ((𝐼𝑗) mPoly 𝑅))
11 oveq1 7353 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡))
1211adantr 480 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡))
1312fveq1d 6824 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑡)‘ran 𝑑))
1413fveq1d 6824 . . . . . . . . . 10 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)))
15 simpl 482 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
168, 9oveq12d 7364 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mVar 𝑟) = ((𝐼𝑗) mVar 𝑅))
1716fveq1d 6824 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑖𝑗) mVar 𝑟)‘𝑥) = (((𝐼𝑗) mVar 𝑅)‘𝑥))
1817fveq2d 6826 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)) = (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))
1918ifeq2d 4496 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))) = if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))
2015, 19mpteq12dv 5178 . . . . . . . . . 10 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))
2114, 20fveq12d 6829 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → ((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2221csbeq2dv 3857 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2322csbeq2dv 3857 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2423csbeq2dv 3857 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2510, 24csbeq12dv 3859 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
266, 25mpteq12dv 5178 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))))
274, 26mpteq12dv 5178 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
2827adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
29 selvffval.i . . 3 (𝜑𝐼𝑉)
3029elexd 3460 . 2 (𝜑𝐼 ∈ V)
31 selvffval.r . . 3 (𝜑𝑅𝑊)
3231elexd 3460 . 2 (𝜑𝑅 ∈ V)
3329pwexd 5317 . . 3 (𝜑 → 𝒫 𝐼 ∈ V)
3433mptexd 7158 . 2 (𝜑 → (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))) ∈ V)
352, 28, 30, 32, 34ovmpod 7498 1 (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  csb 3850  cdif 3899  ifcif 4475  𝒫 cpw 4550  cmpt 5172  ran crn 5617  ccom 5620  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  algSccascl 21787   mVar cmvr 21840   mPoly cmpl 21841   evalSub ces 22005   selectVars cslv 22041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-selv 22045
This theorem is referenced by:  selvfval  22047
  Copyright terms: Public domain W3C validator