Step | Hyp | Ref
| Expression |
1 | | df-selv 21303 |
. . 3
⊢
selectVars = (𝑖 ∈ V,
𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))))))) |
3 | | pweq 4554 |
. . . . 5
⊢ (𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝒫 𝑖 = 𝒫 𝐼) |
5 | | oveq12 7277 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅)) |
6 | 5 | fveq2d 6772 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘(𝐼 mPoly 𝑅))) |
7 | | difeq1 4054 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (𝑖 ∖ 𝑗) = (𝐼 ∖ 𝑗)) |
8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 ∖ 𝑗) = (𝐼 ∖ 𝑗)) |
9 | | simpr 484 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
10 | 8, 9 | oveq12d 7286 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 ∖ 𝑗) mPoly 𝑟) = ((𝐼 ∖ 𝑗) mPoly 𝑅)) |
11 | | oveq1 7275 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡)) |
12 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡)) |
13 | 12 | fveq1d 6770 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑡)‘ran 𝑑)) |
14 | 13 | fveq1d 6770 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))) |
15 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝑖 = 𝐼) |
16 | 8, 9 | oveq12d 7286 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 ∖ 𝑗) mVar 𝑟) = ((𝐼 ∖ 𝑗) mVar 𝑅)) |
17 | 16 | fveq1d 6770 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥) = (((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)) |
18 | 17 | fveq2d 6772 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)) = (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))) |
19 | 18 | ifeq2d 4484 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))) = if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))) |
20 | 15, 19 | mpteq12dv 5169 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))) |
21 | 14, 20 | fveq12d 6775 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))) |
22 | 21 | csbeq2dv 3843 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))) |
23 | 22 | csbeq2dv 3843 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) = ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))) |
24 | 23 | csbeq2dv 3843 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) = ⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))) |
25 | 10, 24 | csbeq12dv 3845 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))) = ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))) |
26 | 6, 25 | mpteq12dv 5169 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))))) |
27 | 4, 26 | mpteq12dv 5169 |
. . 3
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))))) |
28 | 27 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))))) |
29 | | selvffval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
30 | 29 | elexd 3450 |
. 2
⊢ (𝜑 → 𝐼 ∈ V) |
31 | | selvffval.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
32 | 31 | elexd 3450 |
. 2
⊢ (𝜑 → 𝑅 ∈ V) |
33 | 29 | pwexd 5305 |
. . 3
⊢ (𝜑 → 𝒫 𝐼 ∈ V) |
34 | 33 | mptexd 7094 |
. 2
⊢ (𝜑 → (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))))) ∈ V) |
35 | 2, 28, 30, 32, 34 | ovmpod 7416 |
1
⊢ (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))))) |