MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvffval Structured version   Visualization version   GIF version

Theorem selvffval 22104
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvffval.i (𝜑𝐼𝑉)
selvffval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
selvffval (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
Distinct variable groups:   𝑗,𝐼,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥   𝑅,𝑗,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)   𝑉(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)   𝑊(𝑥,𝑢,𝑡,𝑓,𝑗,𝑐,𝑑)

Proof of Theorem selvffval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-selv 22103 . . 3 selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))))
21a1i 11 . 2 (𝜑 → selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))))))))
3 pweq 4596 . . . . 5 (𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼)
43adantr 480 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝒫 𝑖 = 𝒫 𝐼)
5 oveq12 7423 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
65fveq2d 6891 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘(𝐼 mPoly 𝑅)))
7 difeq1 4101 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
87adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖𝑗) = (𝐼𝑗))
9 simpr 484 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑟 = 𝑅)
108, 9oveq12d 7432 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mPoly 𝑟) = ((𝐼𝑗) mPoly 𝑅))
11 oveq1 7421 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡))
1211adantr 480 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 evalSub 𝑡) = (𝐼 evalSub 𝑡))
1312fveq1d 6889 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑡)‘ran 𝑑))
1413fveq1d 6889 . . . . . . . . . 10 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)))
15 simpl 482 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
168, 9oveq12d 7432 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mVar 𝑟) = ((𝐼𝑗) mVar 𝑅))
1716fveq1d 6889 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑖𝑗) mVar 𝑟)‘𝑥) = (((𝐼𝑗) mVar 𝑅)‘𝑥))
1817fveq2d 6891 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)) = (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))
1918ifeq2d 4528 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑟 = 𝑅) → if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))) = if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))
2015, 19mpteq12dv 5215 . . . . . . . . . 10 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))
2114, 20fveq12d 6894 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → ((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2221csbeq2dv 3888 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2322csbeq2dv 3888 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2423csbeq2dv 3888 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = (𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
2510, 24csbeq12dv 3890 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))) = ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))
266, 25mpteq12dv 5215 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))))
274, 26mpteq12dv 5215 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
2827adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
29 selvffval.i . . 3 (𝜑𝐼𝑉)
3029elexd 3488 . 2 (𝜑𝐼 ∈ V)
31 selvffval.r . . 3 (𝜑𝑅𝑊)
3231elexd 3488 . 2 (𝜑𝑅 ∈ V)
3329pwexd 5361 . . 3 (𝜑 → 𝒫 𝐼 ∈ V)
3433mptexd 7227 . 2 (𝜑 → (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))) ∈ V)
352, 28, 30, 32, 34ovmpod 7568 1 (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  csb 3881  cdif 3930  ifcif 4507  𝒫 cpw 4582  cmpt 5207  ran crn 5668  ccom 5671  cfv 6542  (class class class)co 7414  cmpo 7416  Basecbs 17230  algSccascl 21839   mVar cmvr 21892   mPoly cmpl 21893   evalSub ces 22063   selectVars cslv 22099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-selv 22103
This theorem is referenced by:  selvfval  22105
  Copyright terms: Public domain W3C validator