Detailed syntax breakdown of Definition df-mhp
Step | Hyp | Ref
| Expression |
1 | | cmhp 20030 |
. 2
class
mHomP |
2 | | vi |
. . 3
setvar 𝑖 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3415 |
. . 3
class
V |
5 | | vn |
. . . 4
setvar 𝑛 |
6 | | cn0 11707 |
. . . 4
class
ℕ0 |
7 | | vf |
. . . . . . . 8
setvar 𝑓 |
8 | 7 | cv 1506 |
. . . . . . 7
class 𝑓 |
9 | 3 | cv 1506 |
. . . . . . . 8
class 𝑟 |
10 | | c0g 16569 |
. . . . . . . 8
class
0g |
11 | 9, 10 | cfv 6188 |
. . . . . . 7
class
(0g‘𝑟) |
12 | | csupp 7633 |
. . . . . . 7
class
supp |
13 | 8, 11, 12 | co 6976 |
. . . . . 6
class (𝑓 supp (0g‘𝑟)) |
14 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
15 | 14 | cv 1506 |
. . . . . . . . . 10
class 𝑗 |
16 | | vg |
. . . . . . . . . . 11
setvar 𝑔 |
17 | 16 | cv 1506 |
. . . . . . . . . 10
class 𝑔 |
18 | 15, 17 | cfv 6188 |
. . . . . . . . 9
class (𝑔‘𝑗) |
19 | 6, 18, 14 | csu 14903 |
. . . . . . . 8
class
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) |
20 | 5 | cv 1506 |
. . . . . . . 8
class 𝑛 |
21 | 19, 20 | wceq 1507 |
. . . . . . 7
wff
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) = 𝑛 |
22 | | vh |
. . . . . . . . . . . 12
setvar ℎ |
23 | 22 | cv 1506 |
. . . . . . . . . . 11
class ℎ |
24 | 23 | ccnv 5406 |
. . . . . . . . . 10
class ◡ℎ |
25 | | cn 11439 |
. . . . . . . . . 10
class
ℕ |
26 | 24, 25 | cima 5410 |
. . . . . . . . 9
class (◡ℎ “ ℕ) |
27 | | cfn 8306 |
. . . . . . . . 9
class
Fin |
28 | 26, 27 | wcel 2050 |
. . . . . . . 8
wff (◡ℎ “ ℕ) ∈ Fin |
29 | 2 | cv 1506 |
. . . . . . . . 9
class 𝑖 |
30 | | cmap 8206 |
. . . . . . . . 9
class
↑𝑚 |
31 | 6, 29, 30 | co 6976 |
. . . . . . . 8
class
(ℕ0 ↑𝑚 𝑖) |
32 | 28, 22, 31 | crab 3092 |
. . . . . . 7
class {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} |
33 | 21, 16, 32 | crab 3092 |
. . . . . 6
class {𝑔 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) = 𝑛} |
34 | 13, 33 | wss 3829 |
. . . . 5
wff (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) = 𝑛} |
35 | | cmpl 19847 |
. . . . . . 7
class
mPoly |
36 | 29, 9, 35 | co 6976 |
. . . . . 6
class (𝑖 mPoly 𝑟) |
37 | | cbs 16339 |
. . . . . 6
class
Base |
38 | 36, 37 | cfv 6188 |
. . . . 5
class
(Base‘(𝑖 mPoly
𝑟)) |
39 | 34, 7, 38 | crab 3092 |
. . . 4
class {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) = 𝑛}} |
40 | 5, 6, 39 | cmpt 5008 |
. . 3
class (𝑛 ∈ ℕ0
↦ {𝑓 ∈
(Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) = 𝑛}}) |
41 | 2, 3, 4, 4, 40 | cmpo 6978 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) = 𝑛}})) |
42 | 1, 41 | wceq 1507 |
1
wff mHomP =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0
↦ {𝑓 ∈
(Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣
Σ𝑗 ∈
ℕ0 (𝑔‘𝑗) = 𝑛}})) |