Detailed syntax breakdown of Definition df-mhp
| Step | Hyp | Ref
| Expression |
| 1 | | cmhp 22133 |
. 2
class
mHomP |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vn |
. . . 4
setvar 𝑛 |
| 6 | | cn0 12526 |
. . . 4
class
ℕ0 |
| 7 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 8 | 7 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 9 | 3 | cv 1539 |
. . . . . . . 8
class 𝑟 |
| 10 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 11 | 9, 10 | cfv 6561 |
. . . . . . 7
class
(0g‘𝑟) |
| 12 | | csupp 8185 |
. . . . . . 7
class
supp |
| 13 | 8, 11, 12 | co 7431 |
. . . . . 6
class (𝑓 supp (0g‘𝑟)) |
| 14 | | ccnfld 21364 |
. . . . . . . . . 10
class
ℂfld |
| 15 | | cress 17274 |
. . . . . . . . . 10
class
↾s |
| 16 | 14, 6, 15 | co 7431 |
. . . . . . . . 9
class
(ℂfld ↾s
ℕ0) |
| 17 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
| 18 | 17 | cv 1539 |
. . . . . . . . 9
class 𝑔 |
| 19 | | cgsu 17485 |
. . . . . . . . 9
class
Σg |
| 20 | 16, 18, 19 | co 7431 |
. . . . . . . 8
class
((ℂfld ↾s ℕ0)
Σg 𝑔) |
| 21 | 5 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 22 | 20, 21 | wceq 1540 |
. . . . . . 7
wff
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛 |
| 23 | | vh |
. . . . . . . . . . . 12
setvar ℎ |
| 24 | 23 | cv 1539 |
. . . . . . . . . . 11
class ℎ |
| 25 | 24 | ccnv 5684 |
. . . . . . . . . 10
class ◡ℎ |
| 26 | | cn 12266 |
. . . . . . . . . 10
class
ℕ |
| 27 | 25, 26 | cima 5688 |
. . . . . . . . 9
class (◡ℎ “ ℕ) |
| 28 | | cfn 8985 |
. . . . . . . . 9
class
Fin |
| 29 | 27, 28 | wcel 2108 |
. . . . . . . 8
wff (◡ℎ “ ℕ) ∈ Fin |
| 30 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑖 |
| 31 | | cmap 8866 |
. . . . . . . . 9
class
↑m |
| 32 | 6, 30, 31 | co 7431 |
. . . . . . . 8
class
(ℕ0 ↑m 𝑖) |
| 33 | 29, 23, 32 | crab 3436 |
. . . . . . 7
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 34 | 22, 17, 33 | crab 3436 |
. . . . . 6
class {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛} |
| 35 | 13, 34 | wss 3951 |
. . . . 5
wff (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛} |
| 36 | | cmpl 21926 |
. . . . . . 7
class
mPoly |
| 37 | 30, 9, 36 | co 7431 |
. . . . . 6
class (𝑖 mPoly 𝑟) |
| 38 | | cbs 17247 |
. . . . . 6
class
Base |
| 39 | 37, 38 | cfv 6561 |
. . . . 5
class
(Base‘(𝑖 mPoly
𝑟)) |
| 40 | 35, 7, 39 | crab 3436 |
. . . 4
class {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}} |
| 41 | 5, 6, 40 | cmpt 5225 |
. . 3
class (𝑛 ∈ ℕ0
↦ {𝑓 ∈
(Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}}) |
| 42 | 2, 3, 4, 4, 41 | cmpo 7433 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}})) |
| 43 | 1, 42 | wceq 1540 |
1
wff mHomP =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0
↦ {𝑓 ∈
(Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}})) |