Detailed syntax breakdown of Definition df-mhp
Step | Hyp | Ref
| Expression |
1 | | cmhp 21319 |
. 2
class
mHomP |
2 | | vi |
. . 3
setvar 𝑖 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3432 |
. . 3
class
V |
5 | | vn |
. . . 4
setvar 𝑛 |
6 | | cn0 12233 |
. . . 4
class
ℕ0 |
7 | | vf |
. . . . . . . 8
setvar 𝑓 |
8 | 7 | cv 1538 |
. . . . . . 7
class 𝑓 |
9 | 3 | cv 1538 |
. . . . . . . 8
class 𝑟 |
10 | | c0g 17150 |
. . . . . . . 8
class
0g |
11 | 9, 10 | cfv 6433 |
. . . . . . 7
class
(0g‘𝑟) |
12 | | csupp 7977 |
. . . . . . 7
class
supp |
13 | 8, 11, 12 | co 7275 |
. . . . . 6
class (𝑓 supp (0g‘𝑟)) |
14 | | ccnfld 20597 |
. . . . . . . . . 10
class
ℂfld |
15 | | cress 16941 |
. . . . . . . . . 10
class
↾s |
16 | 14, 6, 15 | co 7275 |
. . . . . . . . 9
class
(ℂfld ↾s
ℕ0) |
17 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
18 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
19 | | cgsu 17151 |
. . . . . . . . 9
class
Σg |
20 | 16, 18, 19 | co 7275 |
. . . . . . . 8
class
((ℂfld ↾s ℕ0)
Σg 𝑔) |
21 | 5 | cv 1538 |
. . . . . . . 8
class 𝑛 |
22 | 20, 21 | wceq 1539 |
. . . . . . 7
wff
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛 |
23 | | vh |
. . . . . . . . . . . 12
setvar ℎ |
24 | 23 | cv 1538 |
. . . . . . . . . . 11
class ℎ |
25 | 24 | ccnv 5588 |
. . . . . . . . . 10
class ◡ℎ |
26 | | cn 11973 |
. . . . . . . . . 10
class
ℕ |
27 | 25, 26 | cima 5592 |
. . . . . . . . 9
class (◡ℎ “ ℕ) |
28 | | cfn 8733 |
. . . . . . . . 9
class
Fin |
29 | 27, 28 | wcel 2106 |
. . . . . . . 8
wff (◡ℎ “ ℕ) ∈ Fin |
30 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑖 |
31 | | cmap 8615 |
. . . . . . . . 9
class
↑m |
32 | 6, 30, 31 | co 7275 |
. . . . . . . 8
class
(ℕ0 ↑m 𝑖) |
33 | 29, 23, 32 | crab 3068 |
. . . . . . 7
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
34 | 22, 17, 33 | crab 3068 |
. . . . . 6
class {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛} |
35 | 13, 34 | wss 3887 |
. . . . 5
wff (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛} |
36 | | cmpl 21109 |
. . . . . . 7
class
mPoly |
37 | 30, 9, 36 | co 7275 |
. . . . . 6
class (𝑖 mPoly 𝑟) |
38 | | cbs 16912 |
. . . . . 6
class
Base |
39 | 37, 38 | cfv 6433 |
. . . . 5
class
(Base‘(𝑖 mPoly
𝑟)) |
40 | 35, 7, 39 | crab 3068 |
. . . 4
class {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}} |
41 | 5, 6, 40 | cmpt 5157 |
. . 3
class (𝑛 ∈ ℕ0
↦ {𝑓 ∈
(Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}}) |
42 | 2, 3, 4, 4, 41 | cmpo 7277 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}})) |
43 | 1, 42 | wceq 1539 |
1
wff mHomP =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0
↦ {𝑓 ∈
(Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}})) |