MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-simpg Structured version   Visualization version   GIF version

Definition df-simpg 20039
Description: Define class of all simple groups. A simple group is a group (df-grp 18884) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity (simpgnsgbid 20051). (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
df-simpg SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}

Detailed syntax breakdown of Definition df-simpg
StepHypRef Expression
1 csimpg 20038 . 2 class SimpGrp
2 vg . . . . . 6 setvar 𝑔
32cv 1533 . . . . 5 class 𝑔
4 cnsg 19067 . . . . 5 class NrmSGrp
53, 4cfv 6542 . . . 4 class (NrmSGrp‘𝑔)
6 c2o 8474 . . . 4 class 2o
7 cen 8952 . . . 4 class
85, 6, 7wbr 5142 . . 3 wff (NrmSGrp‘𝑔) ≈ 2o
9 cgrp 18881 . . 3 class Grp
108, 2, 9crab 3427 . 2 class {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
111, 10wceq 1534 1 wff SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
Colors of variables: wff setvar class
This definition is referenced by:  issimpg  20040
  Copyright terms: Public domain W3C validator