| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-simpg | Structured version Visualization version GIF version | ||
| Description: Define class of all simple groups. A simple group is a group (df-grp 18954) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity (simpgnsgbid 20123). (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| df-simpg | ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csimpg 20110 | . 2 class SimpGrp | |
| 2 | vg | . . . . . 6 setvar 𝑔 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 4 | cnsg 19139 | . . . . 5 class NrmSGrp | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (NrmSGrp‘𝑔) |
| 6 | c2o 8500 | . . . 4 class 2o | |
| 7 | cen 8982 | . . . 4 class ≈ | |
| 8 | 5, 6, 7 | wbr 5143 | . . 3 wff (NrmSGrp‘𝑔) ≈ 2o |
| 9 | cgrp 18951 | . . 3 class Grp | |
| 10 | 8, 2, 9 | crab 3436 | . 2 class {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} |
| 11 | 1, 10 | wceq 1540 | 1 wff SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} |
| Colors of variables: wff setvar class |
| This definition is referenced by: issimpg 20112 |
| Copyright terms: Public domain | W3C validator |