| Metamath
Proof Explorer Theorem List (p. 201 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | simpggrp 20001 | A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) | ||
| Theorem | simpggrpd 20002 | A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | simpg2nsg 20003 | A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) | ||
| Theorem | trivnsimpgd 20004 | Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → ¬ 𝐺 ∈ SimpGrp) | ||
| Theorem | simpgntrivd 20005 | Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → ¬ 𝐵 = { 0 }) | ||
| Theorem | simpgnideld 20006* | A simple group contains a nonidentity element. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ¬ 𝑥 = 0 ) | ||
| Theorem | simpgnsgd 20007 | The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) | ||
| Theorem | simpgnsgeqd 20008 | A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) & ⊢ (𝜑 → 𝐴 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐴 = { 0 } ∨ 𝐴 = 𝐵)) | ||
| Theorem | 2nsgsimpgd 20009* | If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → ¬ { 0 } = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | ||
| Theorem | simpgnsgbid 20010 | A nontrivial group is simple if and only if its normal subgroups are exactly the group itself and the trivial subgroup. (Contributed by Rohan Ridenour, 4-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → ¬ { 0 } = 𝐵) ⇒ ⊢ (𝜑 → (𝐺 ∈ SimpGrp ↔ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})) | ||
| Theorem | ablsimpnosubgd 20011 | A subgroup of an abelian simple group containing a nonidentity element is the whole group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → ¬ 𝐴 = 0 ) ⇒ ⊢ (𝜑 → 𝑆 = 𝐵) | ||
| Theorem | ablsimpg1gend 20012* | An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐴 = 0 ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℤ 𝐶 = (𝑛 · 𝐴)) | ||
| Theorem | ablsimpgcygd 20013 | An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → 𝐺 ∈ CycGrp) | ||
| Theorem | ablsimpgfindlem1 20014* | Lemma for ablsimpgfind 20017. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂‘𝑥) ≠ 0) | ||
| Theorem | ablsimpgfindlem2 20015* | Lemma for ablsimpgfind 20017. An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ≠ 0) | ||
| Theorem | cycsubggenodd 20016* | Relationship between the order of a subgroup and the order of a generator of the subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) | ||
| Theorem | ablsimpgfind 20017 | An abelian simple group is finite. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
| Theorem | fincygsubgd 20018* | The subgroup referenced in fincygsubgodd 20019 is a subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ran 𝐻 ∈ (SubGrp‘𝐺)) | ||
| Theorem | fincygsubgodd 20019* | Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐷 = ((♯‘𝐵) / 𝐶) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) & ⊢ 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ran 𝐹 = 𝐵) & ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → (♯‘ran 𝐻) = 𝐷) | ||
| Theorem | fincygsubgodexd 20020* | A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) | ||
| Theorem | prmgrpsimpgd 20021 | A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (♯‘𝐵) ∈ ℙ) ⇒ ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | ||
| Theorem | ablsimpgprmd 20022 | An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℙ) | ||
| Theorem | ablsimpgd 20023 | An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → (𝐺 ∈ SimpGrp ↔ (♯‘𝐵) ∈ ℙ)) | ||
| Syntax | comnd 20024 | Extend class notation with the class of all right ordered monoids. |
| class oMnd | ||
| Syntax | cogrp 20025 | Extend class notation with the class of all right ordered groups. |
| class oGrp | ||
| Definition | df-omnd 20026* | Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to (oppg‘𝑀). (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ oMnd = {𝑔 ∈ Mnd ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} | ||
| Definition | df-ogrp 20027 | Define class of all ordered groups. An ordered group is a group with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ oGrp = (Grp ∩ oMnd) | ||
| Theorem | isomnd 20028* | A (left) ordered monoid is a monoid with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ≤ = (le‘𝑀) ⇒ ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) | ||
| Theorem | isogrp 20029 | A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | ||
| Theorem | ogrpgrp 20030 | A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) | ||
| Theorem | omndmnd 20031 | A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | ||
| Theorem | omndtos 20032 | A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) | ||
| Theorem | omndadd 20033 | In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) | ||
| Theorem | omndaddr 20034 | In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑍 + 𝑋) ≤ (𝑍 + 𝑌)) | ||
| Theorem | omndadd2d 20035 | In a commutative left ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑍) & ⊢ (𝜑 → 𝑌 ≤ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ CMnd) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) | ||
| Theorem | omndadd2rd 20036 | In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑍) & ⊢ (𝜑 → 𝑌 ≤ 𝑊) & ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) | ||
| Theorem | submomnd 20037 | A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ ((𝑀 ∈ oMnd ∧ (𝑀 ↾s 𝐴) ∈ Mnd) → (𝑀 ↾s 𝐴) ∈ oMnd) | ||
| Theorem | omndmul2 20038 | In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ (𝑁 · 𝑋)) | ||
| Theorem | omndmul3 20039 | In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ≤ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 0 ≤ 𝑋) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) | ||
| Theorem | omndmul 20040 | In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑀 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑁 · 𝑌)) | ||
| Theorem | ogrpinv0le 20041 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ≤ = (le‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) → ( 0 ≤ 𝑋 ↔ (𝐼‘𝑋) ≤ 0 )) | ||
| Theorem | ogrpsub 20042 | In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ≤ = (le‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) | ||
| Theorem | ogrpaddlt 20043 | In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍)) | ||
| Theorem | ogrpaddltbi 20044 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 + 𝑍) < (𝑌 + 𝑍))) | ||
| Theorem | ogrpaddltrd 20045 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 < 𝑌) ⇒ ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) | ||
| Theorem | ogrpaddltrbid 20046 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌))) | ||
| Theorem | ogrpsublt 20047 | In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 − 𝑍) < (𝑌 − 𝑍)) | ||
| Theorem | ogrpinv0lt 20048 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ (𝐼‘𝑋) < 0 )) | ||
| Theorem | ogrpinvlt 20049 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (((𝐺 ∈ oGrp ∧ (oppg‘𝐺) ∈ oGrp) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝐼‘𝑌) < (𝐼‘𝑋))) | ||
| Theorem | gsumle 20050 | A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑀 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 ∘r ≤ 𝐺) ⇒ ⊢ (𝜑 → (𝑀 Σg 𝐹) ≤ (𝑀 Σg 𝐺)) | ||
| Syntax | cmgp 20051 | Multiplicative group. |
| class mulGrp | ||
| Definition | df-mgp 20052 | Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and unitgrp 20294 shows that we get a group if we restrict to the elements that have inverses. This allows to formalize such notions as "the multiplication operation of a ring is a monoid" (ringmgp 20150) or "the multiplicative identity" in terms of the identity of a monoid (df-ur 20093). (Contributed by Mario Carneiro, 21-Dec-2014.) |
| ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), (.r‘𝑤)〉)) | ||
| Theorem | fnmgp 20053 | The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ mulGrp Fn V | ||
| Theorem | mgpval 20054 | Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) | ||
| Theorem | mgpplusg 20055 | Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ · = (+g‘𝑀) | ||
| Theorem | mgpbas 20056 | Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑀) | ||
| Theorem | mgpsca 20057 | The multiplication monoid has the same (if any) scalars as the original ring. Mostly to simplify pwsmgp 20238. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑆 = (Scalar‘𝑅) ⇒ ⊢ 𝑆 = (Scalar‘𝑀) | ||
| Theorem | mgptset 20058 | Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (TopSet‘𝑅) = (TopSet‘𝑀) | ||
| Theorem | mgptopn 20059 | Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) ⇒ ⊢ 𝐽 = (TopOpen‘𝑀) | ||
| Theorem | mgpds 20060 | Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐵 = (dist‘𝑅) ⇒ ⊢ 𝐵 = (dist‘𝑀) | ||
| Theorem | mgpress 20061 | Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) | ||
| Theorem | prdsmgp 20062 | The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑍 = (𝑆Xs(mulGrp ∘ 𝑅)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → ((Base‘𝑀) = (Base‘𝑍) ∧ (+g‘𝑀) = (+g‘𝑍))) | ||
According to Wikipedia, "... in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 28-Mar-2025). | ||
| Syntax | crng 20063 | Extend class notation with class of all non-unital rings. |
| class Rng | ||
| Definition | df-rng 20064* | Define the class of all non-unital rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.) |
| ⊢ Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} | ||
| Theorem | isrng 20065* | The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) | ||
| Theorem | rngabl 20066 | A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
| ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | ||
| Theorem | rngmgp 20067 | A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) | ||
| Theorem | rngmgpf 20068 | Restricted functionality of the multiplicative group on non-unital rings (mgpf 20159 analog). (Contributed by AV, 22-Feb-2025.) |
| ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp | ||
| Theorem | rnggrp 20069 | A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
| ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | ||
| Theorem | rngass 20070 | Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) | ||
| Theorem | rngdi 20071 | Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) | ||
| Theorem | rngdir 20072 | Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) | ||
| Theorem | rngacl 20073 | Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | rng0cl 20074 | The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) | ||
| Theorem | rngcl 20075 | Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) | ||
| Theorem | rnglz 20076 | The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 20204. (Revised by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) | ||
| Theorem | rngrz 20077 | The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 20205. (Revised by AV, 16-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) | ||
| Theorem | rngmneg1 20078 | Negation of a product in a non-unital ring (mulneg1 11545 analog). In contrast to ringmneg1 20215, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) | ||
| Theorem | rngmneg2 20079 | Negation of a product in a non-unital ring (mulneg2 11546 analog). In contrast to ringmneg2 20216, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) | ||
| Theorem | rngm2neg 20080 | Double negation of a product in a non-unital ring (mul2neg 11548 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 20217. (Revised by AV, 17-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) | ||
| Theorem | rngansg 20081 | Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | ||
| Theorem | rngsubdi 20082 | Ring multiplication distributes over subtraction. (subdi 11542 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 20218. (Revised by AV, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) | ||
| Theorem | rngsubdir 20083 | Ring multiplication distributes over subtraction. (subdir 11543 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 20219. (Revised by AV, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) | ||
| Theorem | isrngd 20084* | Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Abel) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ⇒ ⊢ (𝜑 → 𝑅 ∈ Rng) | ||
| Theorem | rngpropd 20085* | If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng)) | ||
| Theorem | prdsmulrngcl 20086 | Closure of the multiplication in a structure product of non-unital rings. (Contributed by Mario Carneiro, 11-Mar-2015.) Generalization of prdsmulrcl 20231. (Revised by AV, 21-Feb-2025.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Rng) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) | ||
| Theorem | prdsrngd 20087 | A product of non-unital rings is a non-unital ring. (Contributed by AV, 22-Feb-2025.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Rng) ⇒ ⊢ (𝜑 → 𝑌 ∈ Rng) | ||
| Theorem | imasrng 20088* | The image structure of a non-unital ring is a non-unital ring (imasring 20241 analog). (Contributed by AV, 22-Feb-2025.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Rng) ⇒ ⊢ (𝜑 → 𝑈 ∈ Rng) | ||
| Theorem | imasrngf1 20089 | The image of a non-unital ring under an injection is a non-unital ring (imasmndf1 18676 analog). (Contributed by AV, 22-Feb-2025.) |
| ⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 ∈ Rng) | ||
| Theorem | xpsrngd 20090 | A product of two non-unital rings is a non-unital ring (xpsmnd 18677 analog). (Contributed by AV, 22-Feb-2025.) |
| ⊢ 𝑌 = (𝑆 ×s 𝑅) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ (𝜑 → 𝑅 ∈ Rng) ⇒ ⊢ (𝜑 → 𝑌 ∈ Rng) | ||
| Theorem | qusrng 20091* | The quotient structure of a non-unital ring is a non-unital ring (qusring2 20245 analog). (Contributed by AV, 23-Feb-2025.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ (𝜑 → 𝑅 ∈ Rng) ⇒ ⊢ (𝜑 → 𝑈 ∈ Rng) | ||
In Wikipedia "Identity element", see https://en.wikipedia.org/wiki/Identity_element (18-Jan-2025): "... an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). ... The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit." Calling the multiplicative identity of a ring a unity is taken from the definition of a ring with unity in section 17.3 of [BeauregardFraleigh] p. 135, "A ring ( R , + , . ) is a ring with unity if R is not the zero ring and ( R , . ) is a monoid. In this case, the identity element of ( R , . ) is denoted by 1 and is called the unity of R." This definition of a "ring with unity" corresponds to our definition of a unital ring (see df-ring 20146). Some authors call the multiplicative identity "unit" or "unit element" (for example in section I, 2.2 of [BourbakiAlg1] p. 14, definition in section 1.3 of [Hall] p. 4, or in section I, 1 of [Lang] p. 3), whereas other authors use the term "unit" for an element having a multiplicative inverse (for example in section 17.3 of [BeauregardFraleigh] p. 135, in definition in [Roman] p. 26, or even in section II, 1 of [Lang] p. 84). Sometimes, the multiplicative identity is simply called "one" (see, for example, chapter 8 in [Schechter] p. 180). To avoid this ambiguity of the term "unit", also mentioned in Wikipedia, we call the multiplicative identity of a structure with a multiplication (usually a ring) a "ring unity", or straightly "multiplicative identity". The term "unit" will be used for an element having a multiplicative inverse (see df-unit 20269), and we have "the ring unity is a unit", see 1unit 20285. | ||
| Syntax | cur 20092 | Extend class notation with ring unity. |
| class 1r | ||
| Definition | df-ur 20093 |
Define the multiplicative identity, i.e., the monoid identity (df-0g 17337)
of the multiplicative monoid (df-mgp 20052) of a ring-like structure. This
multiplicative identity is also called "ring unity" or
"unity element".
This definition works by transferring the multiplicative operation from the .r slot to the +g slot and then looking at the element which is then the 0g element, that is an identity with respect to the operation which started out in the .r slot. See also dfur2 20095, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 1r = (0g ∘ mulGrp) | ||
| Theorem | ringidval 20094 | The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ 1 = (0g‘𝐺) | ||
| Theorem | dfur2 20095* | The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) | ||
| Theorem | ringurd 20096* | Deduce the unity element of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) ⇒ ⊢ (𝜑 → 1 = (1r‘𝑅)) | ||
| Syntax | csrg 20097 | Extend class notation with the class of all semirings. |
| class SRing | ||
| Definition | df-srg 20098* | Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings (df-ring 20146), the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡][(0g‘𝑓) / 𝑛]∀𝑥 ∈ 𝑟 (∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} | ||
| Theorem | issrg 20099* | The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | ||
| Theorem | srgcmn 20100 | A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |