| Metamath
Proof Explorer Theorem List (p. 201 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dprdfadd 20001* | Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) | ||
| Theorem | dprdfsub 20002* | Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘f − 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)))) | ||
| Theorem | dprdfeq0 20003* | The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 ↔ 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) | ||
| Theorem | dprdf11 20004* | Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) | ||
| Theorem | dprdsubg 20005 | The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | ||
| Theorem | dprdub 20006 | Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) | ||
| Theorem | dprdlub 20007* | The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) | ||
| Theorem | dprdspan 20008 | The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) | ||
| Theorem | dprdres 20009 | Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ (𝐺 DProd (𝑆 ↾ 𝐴)) ⊆ (𝐺 DProd 𝑆))) | ||
| Theorem | dprdss 20010* | Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑇) & ⊢ (𝜑 → dom 𝑇 = 𝐼) & ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))) | ||
| Theorem | dprdz 20011* | A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝐺dom DProd (𝑥 ∈ 𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) = { 0 })) | ||
| Theorem | dprd0 20012 | The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) | ||
| Theorem | dprdf1o 20013 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆))) | ||
| Theorem | dprdf1 20014 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) | ||
| Theorem | subgdmdprd 20015 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) | ||
| Theorem | subgdprd 20016 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴) ⇒ ⊢ (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆)) | ||
| Theorem | dprdsn 20017 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {〈𝐴, 𝑆〉} ∧ (𝐺 DProd {〈𝐴, 𝑆〉}) = 𝑆)) | ||
| Theorem | dmdprdsplitlem 20018* | Lemma for dmdprdsplit 20028. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → (𝐹‘𝑋) = 0 ) | ||
| Theorem | dprdcntz2 20019 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
| Theorem | dprddisj2 20020 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | ||
| Theorem | dprd2dlem2 20021* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) | ||
| Theorem | dprd2dlem1 20022* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐶))) = (𝐺 DProd (𝑖 ∈ 𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
| Theorem | dprd2da 20023* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | dprd2db 20024* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
| Theorem | dprd2d2 20025* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ 𝑆)) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) ∧ (𝐺 DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))))) | ||
| Theorem | dmdprdsplit2lem 20026 | Lemma for dmdprdsplit 20028. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) ∧ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })) | ||
| Theorem | dmdprdsplit2 20027 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | dmdprdsplit 20028 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) | ||
| Theorem | dprdsplit 20029 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
| Theorem | dmdprdpr 20030 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺dom DProd {〈∅, 𝑆〉, 〈1o, 𝑇〉} ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ (𝑆 ∩ 𝑇) = { 0 }))) | ||
| Theorem | dprdpr 20031 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) ⇒ ⊢ (𝜑 → (𝐺 DProd {〈∅, 𝑆〉, 〈1o, 𝑇〉}) = (𝑆 ⊕ 𝑇)) | ||
| Theorem | dpjlem 20032 | Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) | ||
| Theorem | dpjcntz 20033 | The two subgroups that appear in dpjval 20037 commute. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjdisj 20034 | The two subgroups that appear in dpjval 20037 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) | ||
| Theorem | dpjlsm 20035 | The two subgroups that appear in dpjval 20037 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjfval 20036* | Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ 𝑄 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ 𝐼 ↦ ((𝑆‘𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))) | ||
| Theorem | dpjval 20037 | Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ 𝑄 = (proj1‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjf 20038 | The 𝑋-th index projection is a function from the direct product to the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋):(𝐺 DProd 𝑆)⟶(𝑆‘𝑋)) | ||
| Theorem | dpjidcl 20039* | The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) | ||
| Theorem | dpjeq 20040* | Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐶) ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) | ||
| Theorem | dpjid 20041* | The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) | ||
| Theorem | dpjlid 20042 | The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) ⇒ ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = 𝐴) | ||
| Theorem | dpjrid 20043 | The 𝑌-th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ≠ 𝑋) ⇒ ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = 0 ) | ||
| Theorem | dpjghm 20044 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) | ||
| Theorem | dpjghm2 20045 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋)))) | ||
| Theorem | ablfacrplem 20046* | Lemma for ablfacrp2 20048. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} & ⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) ⇒ ⊢ (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1) | ||
| Theorem | ablfacrp 20047* | A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups 𝐾, 𝐿 that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} & ⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝜑 → ((𝐾 ∩ 𝐿) = { 0 } ∧ (𝐾 ⊕ 𝐿) = 𝐵)) | ||
| Theorem | ablfacrp2 20048* | The factors 𝐾, 𝐿 of ablfacrp 20047 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} & ⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) ⇒ ⊢ (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁)) | ||
| Theorem | ablfac1lem 20049* | Lemma for ablfac1b 20051. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) & ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) | ||
| Theorem | ablfac1a 20050* | The factors of ablfac1b 20051 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) | ||
| Theorem | ablfac1b 20051* | Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | ablfac1c 20052* | The factors of ablfac1b 20051 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = 𝐵) | ||
| Theorem | ablfac1eulem 20053* | Lemma for ablfac1eu 20054. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵)) & ⊢ (𝜑 → dom 𝑇 = 𝐴) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝐶 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑇‘𝑞)) = (𝑞↑𝐶)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))) | ||
| Theorem | ablfac1eu 20054* | The factorization of ablfac1b 20051 is unique, in that any other factorization into prime power factors (even if the exponents are different) must be equal to 𝑆. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵)) & ⊢ (𝜑 → dom 𝑇 = 𝐴) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝐶 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑇‘𝑞)) = (𝑞↑𝐶)) ⇒ ⊢ (𝜑 → 𝑇 = 𝑆) | ||
| Theorem | pgpfac1lem1 20055* | Lemma for pgpfac1 20061. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) = 𝑈) | ||
| Theorem | pgpfac1lem2 20056* | Lemma for pgpfac1 20061. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 ⊕ 𝑊)) | ||
| Theorem | pgpfac1lem3a 20057* | Lemma for pgpfac1 20061. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑃 ∥ 𝐸 ∧ 𝑃 ∥ 𝑀)) | ||
| Theorem | pgpfac1lem3 20058* | Lemma for pgpfac1 20061. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) & ⊢ 𝐷 = (𝐶(+g‘𝐺)((𝑀 / 𝑃) · 𝐴)) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) | ||
| Theorem | pgpfac1lem4 20059* | Lemma for pgpfac1 20061. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) | ||
| Theorem | pgpfac1lem5 20060* | Lemma for pgpfac1 20061. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑠))) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) | ||
| Theorem | pgpfac1 20061* | Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝐵)) | ||
| Theorem | pgpfaclem1 20062* | Lemma for pgpfac 20065. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) & ⊢ 𝐻 = (𝐺 ↾s 𝑈) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐻)) & ⊢ 𝑂 = (od‘𝐻) & ⊢ 𝐸 = (gEx‘𝐻) & ⊢ 0 = (0g‘𝐻) & ⊢ ⊕ = (LSSum‘𝐻) & ⊢ (𝜑 → 𝐸 ≠ 1) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → (𝑂‘𝑋) = 𝐸) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐶) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → (𝐺 DProd 𝑆) = 𝑊) & ⊢ 𝑇 = (𝑆 ++ 〈“(𝐾‘{𝑋})”〉) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) | ||
| Theorem | pgpfaclem2 20063* | Lemma for pgpfac 20065. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) & ⊢ 𝐻 = (𝐺 ↾s 𝑈) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐻)) & ⊢ 𝑂 = (od‘𝐻) & ⊢ 𝐸 = (gEx‘𝐻) & ⊢ 0 = (0g‘𝐻) & ⊢ ⊕ = (LSSum‘𝐻) & ⊢ (𝜑 → 𝐸 ≠ 1) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → (𝑂‘𝑋) = 𝐸) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) | ||
| Theorem | pgpfaclem3 20064* | Lemma for pgpfac 20065. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) | ||
| Theorem | pgpfac 20065* | Full factorization of a finite abelian p-group, by iterating pgpfac1 20061. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) | ||
| Theorem | ablfaclem1 20066* | Lemma for ablfac 20069. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) ⇒ ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) | ||
| Theorem | ablfaclem2 20067* | Lemma for ablfac 20069. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) & ⊢ (𝜑 → 𝐹:𝐴⟶Word 𝐶) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) ∈ (𝑊‘(𝑆‘𝑦))) & ⊢ 𝐿 = ∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝐹‘𝑦)) & ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐿))–1-1-onto→𝐿) ⇒ ⊢ (𝜑 → (𝑊‘𝐵) ≠ ∅) | ||
| Theorem | ablfaclem3 20068* | Lemma for ablfac 20069. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) ⇒ ⊢ (𝜑 → (𝑊‘𝐵) ≠ ∅) | ||
| Theorem | ablfac 20069* | The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) | ||
| Theorem | ablfac2 20070* | Choose generators for each cyclic group in ablfac 20069. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) | ||
| Syntax | csimpg 20071 | Extend class notation with the class of simple groups. |
| class SimpGrp | ||
| Definition | df-simpg 20072 | Define class of all simple groups. A simple group is a group (df-grp 18917) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity (simpgnsgbid 20084). (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} | ||
| Theorem | issimpg 20073 | The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) | ||
| Theorem | issimpgd 20074 | Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 2o) ⇒ ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | ||
| Theorem | simpggrp 20075 | A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) | ||
| Theorem | simpggrpd 20076 | A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | simpg2nsg 20077 | A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) | ||
| Theorem | trivnsimpgd 20078 | Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → ¬ 𝐺 ∈ SimpGrp) | ||
| Theorem | simpgntrivd 20079 | Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → ¬ 𝐵 = { 0 }) | ||
| Theorem | simpgnideld 20080* | A simple group contains a nonidentity element. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ¬ 𝑥 = 0 ) | ||
| Theorem | simpgnsgd 20081 | The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) | ||
| Theorem | simpgnsgeqd 20082 | A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) & ⊢ (𝜑 → 𝐴 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐴 = { 0 } ∨ 𝐴 = 𝐵)) | ||
| Theorem | 2nsgsimpgd 20083* | If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → ¬ { 0 } = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | ||
| Theorem | simpgnsgbid 20084 | A nontrivial group is simple if and only if its normal subgroups are exactly the group itself and the trivial subgroup. (Contributed by Rohan Ridenour, 4-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → ¬ { 0 } = 𝐵) ⇒ ⊢ (𝜑 → (𝐺 ∈ SimpGrp ↔ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})) | ||
| Theorem | ablsimpnosubgd 20085 | A subgroup of an abelian simple group containing a nonidentity element is the whole group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → ¬ 𝐴 = 0 ) ⇒ ⊢ (𝜑 → 𝑆 = 𝐵) | ||
| Theorem | ablsimpg1gend 20086* | An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐴 = 0 ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℤ 𝐶 = (𝑛 · 𝐴)) | ||
| Theorem | ablsimpgcygd 20087 | An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → 𝐺 ∈ CycGrp) | ||
| Theorem | ablsimpgfindlem1 20088* | Lemma for ablsimpgfind 20091. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂‘𝑥) ≠ 0) | ||
| Theorem | ablsimpgfindlem2 20089* | Lemma for ablsimpgfind 20091. An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ≠ 0) | ||
| Theorem | cycsubggenodd 20090* | Relationship between the order of a subgroup and the order of a generator of the subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) | ||
| Theorem | ablsimpgfind 20091 | An abelian simple group is finite. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
| Theorem | fincygsubgd 20092* | The subgroup referenced in fincygsubgodd 20093 is a subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ran 𝐻 ∈ (SubGrp‘𝐺)) | ||
| Theorem | fincygsubgodd 20093* | Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐷 = ((♯‘𝐵) / 𝐶) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) & ⊢ 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ran 𝐹 = 𝐵) & ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → (♯‘ran 𝐻) = 𝐷) | ||
| Theorem | fincygsubgodexd 20094* | A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) | ||
| Theorem | prmgrpsimpgd 20095 | A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (♯‘𝐵) ∈ ℙ) ⇒ ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | ||
| Theorem | ablsimpgprmd 20096 | An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℙ) | ||
| Theorem | ablsimpgd 20097 | An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → (𝐺 ∈ SimpGrp ↔ (♯‘𝐵) ∈ ℙ)) | ||
| Syntax | cmgp 20098 | Multiplicative group. |
| class mulGrp | ||
| Definition | df-mgp 20099 | Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and unitgrp 20341 shows that we get a group if we restrict to the elements that have inverses. This allows to formalize such notions as "the multiplication operation of a ring is a monoid" (ringmgp 20197) or "the multiplicative identity" in terms of the identity of a monoid (df-ur 20140). (Contributed by Mario Carneiro, 21-Dec-2014.) |
| ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), (.r‘𝑤)〉)) | ||
| Theorem | fnmgp 20100 | The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ mulGrp Fn V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |