MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issimpg Structured version   Visualization version   GIF version

Theorem issimpg 19610
Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
issimpg (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))

Proof of Theorem issimpg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑔 = 𝐺 → (NrmSGrp‘𝑔) = (NrmSGrp‘𝐺))
21breq1d 5080 . 2 (𝑔 = 𝐺 → ((NrmSGrp‘𝑔) ≈ 2o ↔ (NrmSGrp‘𝐺) ≈ 2o))
3 df-simpg 19609 . 2 SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
42, 3elrab2 3620 1 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  2oc2o 8261  cen 8688  Grpcgrp 18492  NrmSGrpcnsg 18665  SimpGrpcsimpg 19608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-simpg 19609
This theorem is referenced by:  issimpgd  19611  simpggrp  19612  simpg2nsg  19614
  Copyright terms: Public domain W3C validator