![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issimpg | Structured version Visualization version GIF version |
Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
issimpg | ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑔 = 𝐺 → (NrmSGrp‘𝑔) = (NrmSGrp‘𝐺)) | |
2 | 1 | breq1d 5176 | . 2 ⊢ (𝑔 = 𝐺 → ((NrmSGrp‘𝑔) ≈ 2o ↔ (NrmSGrp‘𝐺) ≈ 2o)) |
3 | df-simpg 20135 | . 2 ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} | |
4 | 2, 3 | elrab2 3711 | 1 ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 2oc2o 8516 ≈ cen 9000 Grpcgrp 18973 NrmSGrpcnsg 19161 SimpGrpcsimpg 20134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-simpg 20135 |
This theorem is referenced by: issimpgd 20137 simpggrp 20138 simpg2nsg 20140 |
Copyright terms: Public domain | W3C validator |