MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issimpg Structured version   Visualization version   GIF version

Theorem issimpg 20000
Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
issimpg (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))

Proof of Theorem issimpg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . 3 (𝑔 = 𝐺 → (NrmSGrp‘𝑔) = (NrmSGrp‘𝐺))
21breq1d 5112 . 2 (𝑔 = 𝐺 → ((NrmSGrp‘𝑔) ≈ 2o ↔ (NrmSGrp‘𝐺) ≈ 2o))
3 df-simpg 19999 . 2 SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
42, 3elrab2 3659 1 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  2oc2o 8405  cen 8892  Grpcgrp 18841  NrmSGrpcnsg 19029  SimpGrpcsimpg 19998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-simpg 19999
This theorem is referenced by:  issimpgd  20001  simpggrp  20002  simpg2nsg  20004
  Copyright terms: Public domain W3C validator