Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issimpg | Structured version Visualization version GIF version |
Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
issimpg | ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝑔 = 𝐺 → (NrmSGrp‘𝑔) = (NrmSGrp‘𝐺)) | |
2 | 1 | breq1d 5084 | . 2 ⊢ (𝑔 = 𝐺 → ((NrmSGrp‘𝑔) ≈ 2o ↔ (NrmSGrp‘𝐺) ≈ 2o)) |
3 | df-simpg 19694 | . 2 ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} | |
4 | 2, 3 | elrab2 3627 | 1 ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 2oc2o 8291 ≈ cen 8730 Grpcgrp 18577 NrmSGrpcnsg 18750 SimpGrpcsimpg 19693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-simpg 19694 |
This theorem is referenced by: issimpgd 19696 simpggrp 19697 simpg2nsg 19699 |
Copyright terms: Public domain | W3C validator |