MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issimpg Structured version   Visualization version   GIF version

Theorem issimpg 20003
Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
issimpg (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))

Proof of Theorem issimpg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6890 . . 3 (𝑔 = 𝐺 → (NrmSGrp‘𝑔) = (NrmSGrp‘𝐺))
21breq1d 5157 . 2 (𝑔 = 𝐺 → ((NrmSGrp‘𝑔) ≈ 2o ↔ (NrmSGrp‘𝐺) ≈ 2o))
3 df-simpg 20002 . 2 SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
42, 3elrab2 3685 1 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1539  wcel 2104   class class class wbr 5147  cfv 6542  2oc2o 8462  cen 8938  Grpcgrp 18855  NrmSGrpcnsg 19037  SimpGrpcsimpg 20001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-simpg 20002
This theorem is referenced by:  issimpgd  20004  simpggrp  20005  simpg2nsg  20007
  Copyright terms: Public domain W3C validator