| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issimpg | Structured version Visualization version GIF version | ||
| Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| issimpg | ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . 3 ⊢ (𝑔 = 𝐺 → (NrmSGrp‘𝑔) = (NrmSGrp‘𝐺)) | |
| 2 | 1 | breq1d 5105 | . 2 ⊢ (𝑔 = 𝐺 → ((NrmSGrp‘𝑔) ≈ 2o ↔ (NrmSGrp‘𝐺) ≈ 2o)) |
| 3 | df-simpg 19990 | . 2 ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} | |
| 4 | 2, 3 | elrab2 3653 | 1 ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 2oc2o 8389 ≈ cen 8876 Grpcgrp 18830 NrmSGrpcnsg 19018 SimpGrpcsimpg 19989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-simpg 19990 |
| This theorem is referenced by: issimpgd 19992 simpggrp 19993 simpg2nsg 19995 |
| Copyright terms: Public domain | W3C validator |