MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpgnsgbid Structured version   Visualization version   GIF version

Theorem simpgnsgbid 20035
Description: A nontrivial group is simple if and only if its normal subgroups are exactly the group itself and the trivial subgroup. (Contributed by Rohan Ridenour, 4-Aug-2023.)
Hypotheses
Ref Expression
simpgnsgbid.1 𝐵 = (Base‘𝐺)
simpgnsgbid.2 0 = (0g𝐺)
simpgnsgbid.3 (𝜑𝐺 ∈ Grp)
simpgnsgbid.4 (𝜑 → ¬ { 0 } = 𝐵)
Assertion
Ref Expression
simpgnsgbid (𝜑 → (𝐺 ∈ SimpGrp ↔ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}))

Proof of Theorem simpgnsgbid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpgnsgbid.1 . . 3 𝐵 = (Base‘𝐺)
2 simpgnsgbid.2 . . 3 0 = (0g𝐺)
3 simpr 484 . . 3 ((𝜑𝐺 ∈ SimpGrp) → 𝐺 ∈ SimpGrp)
41, 2, 3simpgnsgd 20032 . 2 ((𝜑𝐺 ∈ SimpGrp) → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
5 simpgnsgbid.3 . . . 4 (𝜑𝐺 ∈ Grp)
65adantr 480 . . 3 ((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) → 𝐺 ∈ Grp)
7 simpgnsgbid.4 . . . 4 (𝜑 → ¬ { 0 } = 𝐵)
87adantr 480 . . 3 ((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) → ¬ { 0 } = 𝐵)
9 simpr 484 . . . . 5 (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ (NrmSGrp‘𝐺))
10 simplr 768 . . . . 5 (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
119, 10eleqtrd 2830 . . . 4 (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵})
12 elpri 4613 . . . 4 (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
1311, 12syl 17 . . 3 (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
141, 2, 6, 8, 132nsgsimpgd 20034 . 2 ((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) → 𝐺 ∈ SimpGrp)
154, 14impbida 800 1 (𝜑 → (𝐺 ∈ SimpGrp ↔ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {csn 4589  {cpr 4591  cfv 6511  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  NrmSGrpcnsg 19053  SimpGrpcsimpg 20022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-simpg 20023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator