![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpgnsgbid | Structured version Visualization version GIF version |
Description: A nontrivial group is simple if and only if its normal subgroups are exactly the group itself and the trivial subgroup. (Contributed by Rohan Ridenour, 4-Aug-2023.) |
Ref | Expression |
---|---|
simpgnsgbid.1 | ⊢ 𝐵 = (Base‘𝐺) |
simpgnsgbid.2 | ⊢ 0 = (0g‘𝐺) |
simpgnsgbid.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
simpgnsgbid.4 | ⊢ (𝜑 → ¬ { 0 } = 𝐵) |
Ref | Expression |
---|---|
simpgnsgbid | ⊢ (𝜑 → (𝐺 ∈ SimpGrp ↔ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpgnsgbid.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | simpgnsgbid.2 | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ∈ SimpGrp) → 𝐺 ∈ SimpGrp) | |
4 | 1, 2, 3 | simpgnsgd 20074 | . 2 ⊢ ((𝜑 ∧ 𝐺 ∈ SimpGrp) → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
5 | simpgnsgbid.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) → 𝐺 ∈ Grp) |
7 | simpgnsgbid.4 | . . . 4 ⊢ (𝜑 → ¬ { 0 } = 𝐵) | |
8 | 7 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) → ¬ { 0 } = 𝐵) |
9 | simpr 483 | . . . . 5 ⊢ (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ (NrmSGrp‘𝐺)) | |
10 | simplr 767 | . . . . 5 ⊢ (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) | |
11 | 9, 10 | eleqtrd 2827 | . . . 4 ⊢ (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵}) |
12 | elpri 4653 | . . . 4 ⊢ (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) |
14 | 1, 2, 6, 8, 13 | 2nsgsimpgd 20076 | . 2 ⊢ ((𝜑 ∧ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) → 𝐺 ∈ SimpGrp) |
15 | 4, 14 | impbida 799 | 1 ⊢ (𝜑 → (𝐺 ∈ SimpGrp ↔ (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 {csn 4630 {cpr 4632 ‘cfv 6549 Basecbs 17188 0gc0g 17429 Grpcgrp 18903 NrmSGrpcnsg 19089 SimpGrpcsimpg 20064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-0g 17431 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19091 df-nsg 19092 df-simpg 20065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |