Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-singleton Structured version   Visualization version   GIF version

Definition df-singleton 33210
Description: Define the singleton function. See brsingle 33265 for its value. (Contributed by Scott Fenton, 4-Apr-2014.)
Assertion
Ref Expression
df-singleton Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))

Detailed syntax breakdown of Definition df-singleton
StepHypRef Expression
1 csingle 33186 . 2 class Singleton
2 cvv 3500 . . . 4 class V
32, 2cxp 5552 . . 3 class (V × V)
4 cep 5463 . . . . . 6 class E
52, 4ctxp 33178 . . . . 5 class (V ⊗ E )
6 cid 5458 . . . . . 6 class I
76, 2ctxp 33178 . . . . 5 class ( I ⊗ V)
85, 7csymdif 4222 . . . 4 class ((V ⊗ E ) △ ( I ⊗ V))
98crn 5555 . . 3 class ran ((V ⊗ E ) △ ( I ⊗ V))
103, 9cdif 3937 . 2 class ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
111, 10wceq 1530 1 wff Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
Colors of variables: wff setvar class
This definition is referenced by:  brsingle  33265  fnsingle  33267
  Copyright terms: Public domain W3C validator