Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnsingle Structured version   Visualization version   GIF version

Theorem fnsingle 35942
Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnsingle Singleton Fn V

Proof of Theorem fnsingle
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4116 . . . . 5 ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V)
2 df-rel 5666 . . . . 5 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V))
31, 2mpbir 231 . . . 4 Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
4 df-singleton 35885 . . . . 5 Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
54releqi 5761 . . . 4 (Rel Singleton ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))))
63, 5mpbir 231 . . 3 Rel Singleton
7 vex 3468 . . . . . . 7 𝑥 ∈ V
8 vex 3468 . . . . . . 7 𝑦 ∈ V
97, 8brsingle 35940 . . . . . 6 (𝑥Singleton𝑦𝑦 = {𝑥})
10 vex 3468 . . . . . . 7 𝑧 ∈ V
117, 10brsingle 35940 . . . . . 6 (𝑥Singleton𝑧𝑧 = {𝑥})
12 eqtr3 2758 . . . . . 6 ((𝑦 = {𝑥} ∧ 𝑧 = {𝑥}) → 𝑦 = 𝑧)
139, 11, 12syl2anb 598 . . . . 5 ((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1413ax-gen 1795 . . . 4 𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1514gen2 1796 . . 3 𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
16 dffun2 6546 . . 3 (Fun Singleton ↔ (Rel Singleton ∧ ∀𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 711 . 2 Fun Singleton
18 eqv 3474 . . 3 (dom Singleton = V ↔ ∀𝑥 𝑥 ∈ dom Singleton)
19 eqid 2736 . . . . . 6 {𝑥} = {𝑥}
20 vsnex 5409 . . . . . . 7 {𝑥} ∈ V
217, 20brsingle 35940 . . . . . 6 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
2219, 21mpbir 231 . . . . 5 𝑥Singleton{𝑥}
23 breq2 5128 . . . . . 6 (𝑦 = {𝑥} → (𝑥Singleton𝑦𝑥Singleton{𝑥}))
2420, 23spcev 3590 . . . . 5 (𝑥Singleton{𝑥} → ∃𝑦 𝑥Singleton𝑦)
2522, 24ax-mp 5 . . . 4 𝑦 𝑥Singleton𝑦
267eldm 5885 . . . 4 (𝑥 ∈ dom Singleton ↔ ∃𝑦 𝑥Singleton𝑦)
2725, 26mpbir 231 . . 3 𝑥 ∈ dom Singleton
2818, 27mpgbir 1799 . 2 dom Singleton = V
29 df-fn 6539 . 2 (Singleton Fn V ↔ (Fun Singleton ∧ dom Singleton = V))
3017, 28, 29mpbir2an 711 1 Singleton Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3464  cdif 3928  wss 3931  csymdif 4232  {csn 4606   class class class wbr 5124   I cid 5552   E cep 5557   × cxp 5657  dom cdm 5659  ran crn 5660  Rel wrel 5664  Fun wfun 6530   Fn wfn 6531  ctxp 35853  Singletoncsingle 35861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-symdif 4233  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7993  df-2nd 7994  df-txp 35877  df-singleton 35885
This theorem is referenced by:  fvsingle  35943
  Copyright terms: Public domain W3C validator