Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnsingle Structured version   Visualization version   GIF version

Theorem fnsingle 34221
Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnsingle Singleton Fn V

Proof of Theorem fnsingle
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4066 . . . . 5 ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V)
2 df-rel 5596 . . . . 5 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V))
31, 2mpbir 230 . . . 4 Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
4 df-singleton 34164 . . . . 5 Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
54releqi 5688 . . . 4 (Rel Singleton ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))))
63, 5mpbir 230 . . 3 Rel Singleton
7 vex 3436 . . . . . . 7 𝑥 ∈ V
8 vex 3436 . . . . . . 7 𝑦 ∈ V
97, 8brsingle 34219 . . . . . 6 (𝑥Singleton𝑦𝑦 = {𝑥})
10 vex 3436 . . . . . . 7 𝑧 ∈ V
117, 10brsingle 34219 . . . . . 6 (𝑥Singleton𝑧𝑧 = {𝑥})
12 eqtr3 2764 . . . . . 6 ((𝑦 = {𝑥} ∧ 𝑧 = {𝑥}) → 𝑦 = 𝑧)
139, 11, 12syl2anb 598 . . . . 5 ((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1413ax-gen 1798 . . . 4 𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1514gen2 1799 . . 3 𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
16 dffun2 6443 . . 3 (Fun Singleton ↔ (Rel Singleton ∧ ∀𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 708 . 2 Fun Singleton
18 eqv 3441 . . 3 (dom Singleton = V ↔ ∀𝑥 𝑥 ∈ dom Singleton)
19 eqid 2738 . . . . . 6 {𝑥} = {𝑥}
20 snex 5354 . . . . . . 7 {𝑥} ∈ V
217, 20brsingle 34219 . . . . . 6 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
2219, 21mpbir 230 . . . . 5 𝑥Singleton{𝑥}
23 breq2 5078 . . . . . 6 (𝑦 = {𝑥} → (𝑥Singleton𝑦𝑥Singleton{𝑥}))
2420, 23spcev 3545 . . . . 5 (𝑥Singleton{𝑥} → ∃𝑦 𝑥Singleton𝑦)
2522, 24ax-mp 5 . . . 4 𝑦 𝑥Singleton𝑦
267eldm 5809 . . . 4 (𝑥 ∈ dom Singleton ↔ ∃𝑦 𝑥Singleton𝑦)
2725, 26mpbir 230 . . 3 𝑥 ∈ dom Singleton
2818, 27mpgbir 1802 . 2 dom Singleton = V
29 df-fn 6436 . 2 (Singleton Fn V ↔ (Fun Singleton ∧ dom Singleton = V))
3017, 28, 29mpbir2an 708 1 Singleton Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  csymdif 4175  {csn 4561   class class class wbr 5074   I cid 5488   E cep 5494   × cxp 5587  dom cdm 5589  ran crn 5590  Rel wrel 5594  Fun wfun 6427   Fn wfn 6428  ctxp 34132  Singletoncsingle 34140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-txp 34156  df-singleton 34164
This theorem is referenced by:  fvsingle  34222
  Copyright terms: Public domain W3C validator