Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnsingle Structured version   Visualization version   GIF version

Theorem fnsingle 35907
Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnsingle Singleton Fn V

Proof of Theorem fnsingle
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4099 . . . . 5 ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V)
2 df-rel 5645 . . . . 5 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V))
31, 2mpbir 231 . . . 4 Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
4 df-singleton 35850 . . . . 5 Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
54releqi 5740 . . . 4 (Rel Singleton ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))))
63, 5mpbir 231 . . 3 Rel Singleton
7 vex 3451 . . . . . . 7 𝑥 ∈ V
8 vex 3451 . . . . . . 7 𝑦 ∈ V
97, 8brsingle 35905 . . . . . 6 (𝑥Singleton𝑦𝑦 = {𝑥})
10 vex 3451 . . . . . . 7 𝑧 ∈ V
117, 10brsingle 35905 . . . . . 6 (𝑥Singleton𝑧𝑧 = {𝑥})
12 eqtr3 2751 . . . . . 6 ((𝑦 = {𝑥} ∧ 𝑧 = {𝑥}) → 𝑦 = 𝑧)
139, 11, 12syl2anb 598 . . . . 5 ((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1413ax-gen 1795 . . . 4 𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1514gen2 1796 . . 3 𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
16 dffun2 6521 . . 3 (Fun Singleton ↔ (Rel Singleton ∧ ∀𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 711 . 2 Fun Singleton
18 eqv 3457 . . 3 (dom Singleton = V ↔ ∀𝑥 𝑥 ∈ dom Singleton)
19 eqid 2729 . . . . . 6 {𝑥} = {𝑥}
20 vsnex 5389 . . . . . . 7 {𝑥} ∈ V
217, 20brsingle 35905 . . . . . 6 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
2219, 21mpbir 231 . . . . 5 𝑥Singleton{𝑥}
23 breq2 5111 . . . . . 6 (𝑦 = {𝑥} → (𝑥Singleton𝑦𝑥Singleton{𝑥}))
2420, 23spcev 3572 . . . . 5 (𝑥Singleton{𝑥} → ∃𝑦 𝑥Singleton𝑦)
2522, 24ax-mp 5 . . . 4 𝑦 𝑥Singleton𝑦
267eldm 5864 . . . 4 (𝑥 ∈ dom Singleton ↔ ∃𝑦 𝑥Singleton𝑦)
2725, 26mpbir 231 . . 3 𝑥 ∈ dom Singleton
2818, 27mpgbir 1799 . 2 dom Singleton = V
29 df-fn 6514 . 2 (Singleton Fn V ↔ (Fun Singleton ∧ dom Singleton = V))
3017, 28, 29mpbir2an 711 1 Singleton Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cdif 3911  wss 3914  csymdif 4215  {csn 4589   class class class wbr 5107   I cid 5532   E cep 5537   × cxp 5636  dom cdm 5638  ran crn 5639  Rel wrel 5643  Fun wfun 6505   Fn wfn 6506  ctxp 35818  Singletoncsingle 35826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-symdif 4216  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-txp 35842  df-singleton 35850
This theorem is referenced by:  fvsingle  35908
  Copyright terms: Public domain W3C validator