Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnsingle Structured version   Visualization version   GIF version

Theorem fnsingle 35883
Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnsingle Singleton Fn V

Proof of Theorem fnsingle
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4159 . . . . 5 ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V)
2 df-rel 5707 . . . . 5 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V))
31, 2mpbir 231 . . . 4 Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
4 df-singleton 35826 . . . . 5 Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
54releqi 5801 . . . 4 (Rel Singleton ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))))
63, 5mpbir 231 . . 3 Rel Singleton
7 vex 3492 . . . . . . 7 𝑥 ∈ V
8 vex 3492 . . . . . . 7 𝑦 ∈ V
97, 8brsingle 35881 . . . . . 6 (𝑥Singleton𝑦𝑦 = {𝑥})
10 vex 3492 . . . . . . 7 𝑧 ∈ V
117, 10brsingle 35881 . . . . . 6 (𝑥Singleton𝑧𝑧 = {𝑥})
12 eqtr3 2766 . . . . . 6 ((𝑦 = {𝑥} ∧ 𝑧 = {𝑥}) → 𝑦 = 𝑧)
139, 11, 12syl2anb 597 . . . . 5 ((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1413ax-gen 1793 . . . 4 𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1514gen2 1794 . . 3 𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
16 dffun2 6583 . . 3 (Fun Singleton ↔ (Rel Singleton ∧ ∀𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 710 . 2 Fun Singleton
18 eqv 3498 . . 3 (dom Singleton = V ↔ ∀𝑥 𝑥 ∈ dom Singleton)
19 eqid 2740 . . . . . 6 {𝑥} = {𝑥}
20 vsnex 5449 . . . . . . 7 {𝑥} ∈ V
217, 20brsingle 35881 . . . . . 6 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
2219, 21mpbir 231 . . . . 5 𝑥Singleton{𝑥}
23 breq2 5170 . . . . . 6 (𝑦 = {𝑥} → (𝑥Singleton𝑦𝑥Singleton{𝑥}))
2420, 23spcev 3619 . . . . 5 (𝑥Singleton{𝑥} → ∃𝑦 𝑥Singleton𝑦)
2522, 24ax-mp 5 . . . 4 𝑦 𝑥Singleton𝑦
267eldm 5925 . . . 4 (𝑥 ∈ dom Singleton ↔ ∃𝑦 𝑥Singleton𝑦)
2725, 26mpbir 231 . . 3 𝑥 ∈ dom Singleton
2818, 27mpgbir 1797 . 2 dom Singleton = V
29 df-fn 6576 . 2 (Singleton Fn V ↔ (Fun Singleton ∧ dom Singleton = V))
3017, 28, 29mpbir2an 710 1 Singleton Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  csymdif 4271  {csn 4648   class class class wbr 5166   I cid 5592   E cep 5598   × cxp 5698  dom cdm 5700  ran crn 5701  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568  ctxp 35794  Singletoncsingle 35802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-symdif 4272  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-txp 35818  df-singleton 35826
This theorem is referenced by:  fvsingle  35884
  Copyright terms: Public domain W3C validator