Step | Hyp | Ref
| Expression |
1 | | difss 4039 |
. . . . 5
⊢ ((V
× V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V
× V) |
2 | | df-rel 5535 |
. . . . 5
⊢ (Rel ((V
× V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ↔ ((V
× V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V
× V)) |
3 | 1, 2 | mpbir 234 |
. . . 4
⊢ Rel ((V
× V) ∖ ran ((V ⊗ E ) △ ( I ⊗
V))) |
4 | | df-singleton 33748 |
. . . . 5
⊢ Singleton
= ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗
V))) |
5 | 4 | releqi 5626 |
. . . 4
⊢ (Rel
Singleton ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I
⊗ V)))) |
6 | 3, 5 | mpbir 234 |
. . 3
⊢ Rel
Singleton |
7 | | vex 3413 |
. . . . . . 7
⊢ 𝑥 ∈ V |
8 | | vex 3413 |
. . . . . . 7
⊢ 𝑦 ∈ V |
9 | 7, 8 | brsingle 33803 |
. . . . . 6
⊢ (𝑥Singleton𝑦 ↔ 𝑦 = {𝑥}) |
10 | | vex 3413 |
. . . . . . 7
⊢ 𝑧 ∈ V |
11 | 7, 10 | brsingle 33803 |
. . . . . 6
⊢ (𝑥Singleton𝑧 ↔ 𝑧 = {𝑥}) |
12 | | eqtr3 2780 |
. . . . . 6
⊢ ((𝑦 = {𝑥} ∧ 𝑧 = {𝑥}) → 𝑦 = 𝑧) |
13 | 9, 11, 12 | syl2anb 600 |
. . . . 5
⊢ ((𝑥Singleton𝑦 ∧ 𝑥Singleton𝑧) → 𝑦 = 𝑧) |
14 | 13 | ax-gen 1797 |
. . . 4
⊢
∀𝑧((𝑥Singleton𝑦 ∧ 𝑥Singleton𝑧) → 𝑦 = 𝑧) |
15 | 14 | gen2 1798 |
. . 3
⊢
∀𝑥∀𝑦∀𝑧((𝑥Singleton𝑦 ∧ 𝑥Singleton𝑧) → 𝑦 = 𝑧) |
16 | | dffun2 6350 |
. . 3
⊢ (Fun
Singleton ↔ (Rel Singleton ∧ ∀𝑥∀𝑦∀𝑧((𝑥Singleton𝑦 ∧ 𝑥Singleton𝑧) → 𝑦 = 𝑧))) |
17 | 6, 15, 16 | mpbir2an 710 |
. 2
⊢ Fun
Singleton |
18 | | eqv 3418 |
. . 3
⊢ (dom
Singleton = V ↔ ∀𝑥 𝑥 ∈ dom Singleton) |
19 | | eqid 2758 |
. . . . . 6
⊢ {𝑥} = {𝑥} |
20 | | snex 5304 |
. . . . . . 7
⊢ {𝑥} ∈ V |
21 | 7, 20 | brsingle 33803 |
. . . . . 6
⊢ (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥}) |
22 | 19, 21 | mpbir 234 |
. . . . 5
⊢ 𝑥Singleton{𝑥} |
23 | | breq2 5040 |
. . . . . 6
⊢ (𝑦 = {𝑥} → (𝑥Singleton𝑦 ↔ 𝑥Singleton{𝑥})) |
24 | 20, 23 | spcev 3527 |
. . . . 5
⊢ (𝑥Singleton{𝑥} → ∃𝑦 𝑥Singleton𝑦) |
25 | 22, 24 | ax-mp 5 |
. . . 4
⊢
∃𝑦 𝑥Singleton𝑦 |
26 | 7 | eldm 5746 |
. . . 4
⊢ (𝑥 ∈ dom Singleton ↔
∃𝑦 𝑥Singleton𝑦) |
27 | 25, 26 | mpbir 234 |
. . 3
⊢ 𝑥 ∈ dom
Singleton |
28 | 18, 27 | mpgbir 1801 |
. 2
⊢ dom
Singleton = V |
29 | | df-fn 6343 |
. 2
⊢
(Singleton Fn V ↔ (Fun Singleton ∧ dom Singleton =
V)) |
30 | 17, 28, 29 | mpbir2an 710 |
1
⊢ Singleton
Fn V |