Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnsingle Structured version   Visualization version   GIF version

Theorem fnsingle 34148
Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnsingle Singleton Fn V

Proof of Theorem fnsingle
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4062 . . . . 5 ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V)
2 df-rel 5587 . . . . 5 (Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ↔ ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) ⊆ (V × V))
31, 2mpbir 230 . . . 4 Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
4 df-singleton 34091 . . . . 5 Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
54releqi 5678 . . . 4 (Rel Singleton ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))))
63, 5mpbir 230 . . 3 Rel Singleton
7 vex 3426 . . . . . . 7 𝑥 ∈ V
8 vex 3426 . . . . . . 7 𝑦 ∈ V
97, 8brsingle 34146 . . . . . 6 (𝑥Singleton𝑦𝑦 = {𝑥})
10 vex 3426 . . . . . . 7 𝑧 ∈ V
117, 10brsingle 34146 . . . . . 6 (𝑥Singleton𝑧𝑧 = {𝑥})
12 eqtr3 2764 . . . . . 6 ((𝑦 = {𝑥} ∧ 𝑧 = {𝑥}) → 𝑦 = 𝑧)
139, 11, 12syl2anb 597 . . . . 5 ((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1413ax-gen 1799 . . . 4 𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
1514gen2 1800 . . 3 𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)
16 dffun2 6428 . . 3 (Fun Singleton ↔ (Rel Singleton ∧ ∀𝑥𝑦𝑧((𝑥Singleton𝑦𝑥Singleton𝑧) → 𝑦 = 𝑧)))
176, 15, 16mpbir2an 707 . 2 Fun Singleton
18 eqv 3431 . . 3 (dom Singleton = V ↔ ∀𝑥 𝑥 ∈ dom Singleton)
19 eqid 2738 . . . . . 6 {𝑥} = {𝑥}
20 snex 5349 . . . . . . 7 {𝑥} ∈ V
217, 20brsingle 34146 . . . . . 6 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
2219, 21mpbir 230 . . . . 5 𝑥Singleton{𝑥}
23 breq2 5074 . . . . . 6 (𝑦 = {𝑥} → (𝑥Singleton𝑦𝑥Singleton{𝑥}))
2420, 23spcev 3535 . . . . 5 (𝑥Singleton{𝑥} → ∃𝑦 𝑥Singleton𝑦)
2522, 24ax-mp 5 . . . 4 𝑦 𝑥Singleton𝑦
267eldm 5798 . . . 4 (𝑥 ∈ dom Singleton ↔ ∃𝑦 𝑥Singleton𝑦)
2725, 26mpbir 230 . . 3 𝑥 ∈ dom Singleton
2818, 27mpgbir 1803 . 2 dom Singleton = V
29 df-fn 6421 . 2 (Singleton Fn V ↔ (Fun Singleton ∧ dom Singleton = V))
3017, 28, 29mpbir2an 707 1 Singleton Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cdif 3880  wss 3883  csymdif 4172  {csn 4558   class class class wbr 5070   I cid 5479   E cep 5485   × cxp 5578  dom cdm 5580  ran crn 5581  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  ctxp 34059  Singletoncsingle 34067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-singleton 34091
This theorem is referenced by:  fvsingle  34149
  Copyright terms: Public domain W3C validator