| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version | ||
| Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brsingle.1 | ⊢ 𝐴 ∈ V |
| brsingle.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | df-singleton 35902 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
| 4 | brxp 5665 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | 1, 2, 4 | mpbir2an 711 | . 2 ⊢ 𝐴(V × V)𝐵 |
| 6 | velsn 4592 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 7 | 1 | ideq 5792 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
| 9 | 1, 2, 3, 5, 8 | brtxpsd3 35936 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 class class class wbr 5091 I cid 5510 × cxp 5614 Singletoncsingle 35878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-symdif 4203 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35894 df-singleton 35902 |
| This theorem is referenced by: elsingles 35958 fnsingle 35959 fvsingle 35960 brapply 35978 brsuccf 35981 funpartlem 35982 |
| Copyright terms: Public domain | W3C validator |