Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsingle Structured version   Visualization version   GIF version

Theorem brsingle 35893
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brsingle.1 𝐴 ∈ V
brsingle.2 𝐵 ∈ V
Assertion
Ref Expression
brsingle (𝐴Singleton𝐵𝐵 = {𝐴})

Proof of Theorem brsingle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brsingle.1 . 2 𝐴 ∈ V
2 brsingle.2 . 2 𝐵 ∈ V
3 df-singleton 35838 . 2 Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
4 brxp 5672 . . 3 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
51, 2, 4mpbir2an 711 . 2 𝐴(V × V)𝐵
6 velsn 4595 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
71ideq 5799 . . 3 (𝑥 I 𝐴𝑥 = 𝐴)
86, 7bitr4i 278 . 2 (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴)
91, 2, 3, 5, 8brtxpsd3 35872 1 (𝐴Singleton𝐵𝐵 = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579   class class class wbr 5095   I cid 5517   × cxp 5621  Singletoncsingle 35814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-symdif 4206  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7931  df-2nd 7932  df-txp 35830  df-singleton 35838
This theorem is referenced by:  elsingles  35894  fnsingle  35895  fvsingle  35896  brapply  35914  brsuccf  35917  funpartlem  35918
  Copyright terms: Public domain W3C validator