| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version | ||
| Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brsingle.1 | ⊢ 𝐴 ∈ V |
| brsingle.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | df-singleton 35927 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
| 4 | brxp 5670 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | 1, 2, 4 | mpbir2an 711 | . 2 ⊢ 𝐴(V × V)𝐵 |
| 6 | velsn 4593 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 7 | 1 | ideq 5798 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
| 9 | 1, 2, 3, 5, 8 | brtxpsd3 35961 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 class class class wbr 5095 I cid 5515 × cxp 5619 Singletoncsingle 35903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-symdif 4202 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-eprel 5521 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fo 6494 df-fv 6496 df-1st 7929 df-2nd 7930 df-txp 35919 df-singleton 35927 |
| This theorem is referenced by: elsingles 35983 fnsingle 35984 fvsingle 35985 brapply 36003 lemsuccf 36006 funpartlem 36009 |
| Copyright terms: Public domain | W3C validator |