![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version |
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brsingle.1 | ⊢ 𝐴 ∈ V |
brsingle.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-singleton 35453 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
4 | brxp 5722 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 710 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | velsn 4641 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
7 | 1 | ideq 5850 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
9 | 1, 2, 3, 5, 8 | brtxpsd3 35487 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 Vcvv 3470 {csn 4625 class class class wbr 5143 I cid 5570 × cxp 5671 Singletoncsingle 35429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-symdif 4239 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-eprel 5577 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7988 df-2nd 7989 df-txp 35445 df-singleton 35453 |
This theorem is referenced by: elsingles 35509 fnsingle 35510 fvsingle 35511 brapply 35529 brsuccf 35532 funpartlem 35533 |
Copyright terms: Public domain | W3C validator |