![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version |
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brsingle.1 | ⊢ 𝐴 ∈ V |
brsingle.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-singleton 35826 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
4 | brxp 5749 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 710 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | velsn 4664 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
7 | 1 | ideq 5877 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
9 | 1, 2, 3, 5, 8 | brtxpsd3 35860 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 class class class wbr 5166 I cid 5592 × cxp 5698 Singletoncsingle 35802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-symdif 4272 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-txp 35818 df-singleton 35826 |
This theorem is referenced by: elsingles 35882 fnsingle 35883 fvsingle 35884 brapply 35902 brsuccf 35905 funpartlem 35906 |
Copyright terms: Public domain | W3C validator |