Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version |
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brsingle.1 | ⊢ 𝐴 ∈ V |
brsingle.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-singleton 34143 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
4 | brxp 5635 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 707 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | velsn 4582 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
7 | 1 | ideq 5758 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
9 | 1, 2, 3, 5, 8 | brtxpsd3 34177 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 class class class wbr 5078 I cid 5487 × cxp 5586 Singletoncsingle 34119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-symdif 4181 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-eprel 5494 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fo 6436 df-fv 6438 df-1st 7817 df-2nd 7818 df-txp 34135 df-singleton 34143 |
This theorem is referenced by: elsingles 34199 fnsingle 34200 fvsingle 34201 brapply 34219 brsuccf 34222 funpartlem 34223 |
Copyright terms: Public domain | W3C validator |