| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version | ||
| Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brsingle.1 | ⊢ 𝐴 ∈ V |
| brsingle.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | df-singleton 35864 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
| 4 | brxp 5733 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | 1, 2, 4 | mpbir2an 711 | . 2 ⊢ 𝐴(V × V)𝐵 |
| 6 | velsn 4641 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 7 | 1 | ideq 5862 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
| 9 | 1, 2, 3, 5, 8 | brtxpsd3 35898 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3479 {csn 4625 class class class wbr 5142 I cid 5576 × cxp 5682 Singletoncsingle 35840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-symdif 4252 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-eprel 5583 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-fv 6568 df-1st 8015 df-2nd 8016 df-txp 35856 df-singleton 35864 |
| This theorem is referenced by: elsingles 35920 fnsingle 35921 fvsingle 35922 brapply 35940 brsuccf 35943 funpartlem 35944 |
| Copyright terms: Public domain | W3C validator |