Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsingle Structured version   Visualization version   GIF version

Theorem brsingle 34198
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brsingle.1 𝐴 ∈ V
brsingle.2 𝐵 ∈ V
Assertion
Ref Expression
brsingle (𝐴Singleton𝐵𝐵 = {𝐴})

Proof of Theorem brsingle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brsingle.1 . 2 𝐴 ∈ V
2 brsingle.2 . 2 𝐵 ∈ V
3 df-singleton 34143 . 2 Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
4 brxp 5635 . . 3 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
51, 2, 4mpbir2an 707 . 2 𝐴(V × V)𝐵
6 velsn 4582 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
71ideq 5758 . . 3 (𝑥 I 𝐴𝑥 = 𝐴)
86, 7bitr4i 277 . 2 (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴)
91, 2, 3, 5, 8brtxpsd3 34177 1 (𝐴Singleton𝐵𝐵 = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566   class class class wbr 5078   I cid 5487   × cxp 5586  Singletoncsingle 34119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-symdif 4181  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-eprel 5494  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fo 6436  df-fv 6438  df-1st 7817  df-2nd 7818  df-txp 34135  df-singleton 34143
This theorem is referenced by:  elsingles  34199  fnsingle  34200  fvsingle  34201  brapply  34219  brsuccf  34222  funpartlem  34223
  Copyright terms: Public domain W3C validator