Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version |
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brsingle.1 | ⊢ 𝐴 ∈ V |
brsingle.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-singleton 34213 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
4 | brxp 5647 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 709 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | velsn 4581 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
7 | 1 | ideq 5774 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
9 | 1, 2, 3, 5, 8 | brtxpsd3 34247 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 Vcvv 3437 {csn 4565 class class class wbr 5081 I cid 5499 × cxp 5598 Singletoncsingle 34189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-symdif 4182 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fo 6464 df-fv 6466 df-1st 7863 df-2nd 7864 df-txp 34205 df-singleton 34213 |
This theorem is referenced by: elsingles 34269 fnsingle 34270 fvsingle 34271 brapply 34289 brsuccf 34292 funpartlem 34293 |
Copyright terms: Public domain | W3C validator |