![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsingle | Structured version Visualization version GIF version |
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brsingle.1 | ⊢ 𝐴 ∈ V |
brsingle.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brsingle | ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsingle.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brsingle.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-singleton 35844 | . 2 ⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | |
4 | brxp 5738 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 711 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | velsn 4647 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
7 | 1 | ideq 5866 | . . 3 ⊢ (𝑥 I 𝐴 ↔ 𝑥 = 𝐴) |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 I 𝐴) |
9 | 1, 2, 3, 5, 8 | brtxpsd3 35878 | 1 ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 class class class wbr 5148 I cid 5582 × cxp 5687 Singletoncsingle 35820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-symdif 4259 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-2nd 8014 df-txp 35836 df-singleton 35844 |
This theorem is referenced by: elsingles 35900 fnsingle 35901 fvsingle 35902 brapply 35920 brsuccf 35923 funpartlem 35924 |
Copyright terms: Public domain | W3C validator |