Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sinh Structured version   Visualization version   GIF version

Definition df-sinh 49715
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5183, which requires the form (𝑥𝐴𝐵). See sinhval-named 49718 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 49721 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
df-sinh sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))

Detailed syntax breakdown of Definition df-sinh
StepHypRef Expression
1 csinh 49712 . 2 class sinh
2 vx . . 3 setvar 𝑥
3 cc 11042 . . 3 class
4 ci 11046 . . . . . 6 class i
52cv 1539 . . . . . 6 class 𝑥
6 cmul 11049 . . . . . 6 class ·
74, 5, 6co 7369 . . . . 5 class (i · 𝑥)
8 csin 16005 . . . . 5 class sin
97, 8cfv 6499 . . . 4 class (sin‘(i · 𝑥))
10 cdiv 11811 . . . 4 class /
119, 4, 10co 7369 . . 3 class ((sin‘(i · 𝑥)) / i)
122, 3, 11cmpt 5183 . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
131, 12wceq 1540 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
Colors of variables: wff setvar class
This definition is referenced by:  sinhval-named  49718
  Copyright terms: Public domain W3C validator