Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-sinh | Structured version Visualization version GIF version |
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5135, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). See sinhval-named 46109 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 46112 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
Ref | Expression |
---|---|
df-sinh | ⊢ sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csinh 46103 | . 2 class sinh | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cc 10727 | . . 3 class ℂ | |
4 | ci 10731 | . . . . . 6 class i | |
5 | 2 | cv 1542 | . . . . . 6 class 𝑥 |
6 | cmul 10734 | . . . . . 6 class · | |
7 | 4, 5, 6 | co 7213 | . . . . 5 class (i · 𝑥) |
8 | csin 15625 | . . . . 5 class sin | |
9 | 7, 8 | cfv 6380 | . . . 4 class (sin‘(i · 𝑥)) |
10 | cdiv 11489 | . . . 4 class / | |
11 | 9, 4, 10 | co 7213 | . . 3 class ((sin‘(i · 𝑥)) / i) |
12 | 2, 3, 11 | cmpt 5135 | . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
13 | 1, 12 | wceq 1543 | 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
Colors of variables: wff setvar class |
This definition is referenced by: sinhval-named 46109 |
Copyright terms: Public domain | W3C validator |