Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sinh Structured version   Visualization version   GIF version

Definition df-sinh 46679
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5164, which requires the form (𝑥𝐴𝐵). See sinhval-named 46682 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 46685 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
df-sinh sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))

Detailed syntax breakdown of Definition df-sinh
StepHypRef Expression
1 csinh 46676 . 2 class sinh
2 vx . . 3 setvar 𝑥
3 cc 10919 . . 3 class
4 ci 10923 . . . . . 6 class i
52cv 1538 . . . . . 6 class 𝑥
6 cmul 10926 . . . . . 6 class ·
74, 5, 6co 7307 . . . . 5 class (i · 𝑥)
8 csin 15822 . . . . 5 class sin
97, 8cfv 6458 . . . 4 class (sin‘(i · 𝑥))
10 cdiv 11682 . . . 4 class /
119, 4, 10co 7307 . . 3 class ((sin‘(i · 𝑥)) / i)
122, 3, 11cmpt 5164 . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
131, 12wceq 1539 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
Colors of variables: wff setvar class
This definition is referenced by:  sinhval-named  46682
  Copyright terms: Public domain W3C validator