![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-sinh | Structured version Visualization version GIF version |
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5231, which requires the form (π₯ β π΄ β¦ π΅). See sinhval-named 47859 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 47862 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
Ref | Expression |
---|---|
df-sinh | β’ sinh = (π₯ β β β¦ ((sinβ(i Β· π₯)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csinh 47853 | . 2 class sinh | |
2 | vx | . . 3 setvar π₯ | |
3 | cc 11110 | . . 3 class β | |
4 | ci 11114 | . . . . . 6 class i | |
5 | 2 | cv 1540 | . . . . . 6 class π₯ |
6 | cmul 11117 | . . . . . 6 class Β· | |
7 | 4, 5, 6 | co 7411 | . . . . 5 class (i Β· π₯) |
8 | csin 16009 | . . . . 5 class sin | |
9 | 7, 8 | cfv 6543 | . . . 4 class (sinβ(i Β· π₯)) |
10 | cdiv 11873 | . . . 4 class / | |
11 | 9, 4, 10 | co 7411 | . . 3 class ((sinβ(i Β· π₯)) / i) |
12 | 2, 3, 11 | cmpt 5231 | . 2 class (π₯ β β β¦ ((sinβ(i Β· π₯)) / i)) |
13 | 1, 12 | wceq 1541 | 1 wff sinh = (π₯ β β β¦ ((sinβ(i Β· π₯)) / i)) |
Colors of variables: wff setvar class |
This definition is referenced by: sinhval-named 47859 |
Copyright terms: Public domain | W3C validator |