| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-sinh | Structured version Visualization version GIF version | ||
| Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5196, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). See sinhval-named 49602 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 49605 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| df-sinh | ⊢ sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csinh 49596 | . 2 class sinh | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11084 | . . 3 class ℂ | |
| 4 | ci 11088 | . . . . . 6 class i | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | cmul 11091 | . . . . . 6 class · | |
| 7 | 4, 5, 6 | co 7394 | . . . . 5 class (i · 𝑥) |
| 8 | csin 16036 | . . . . 5 class sin | |
| 9 | 7, 8 | cfv 6519 | . . . 4 class (sin‘(i · 𝑥)) |
| 10 | cdiv 11851 | . . . 4 class / | |
| 11 | 9, 4, 10 | co 7394 | . . 3 class ((sin‘(i · 𝑥)) / i) |
| 12 | 2, 3, 11 | cmpt 5196 | . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
| 13 | 1, 12 | wceq 1540 | 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sinhval-named 49602 |
| Copyright terms: Public domain | W3C validator |