Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sinh Structured version   Visualization version   GIF version

Definition df-sinh 47778
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5232, which requires the form (π‘₯ ∈ 𝐴 ↦ 𝐡). See sinhval-named 47781 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 47784 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
df-sinh sinh = (π‘₯ ∈ β„‚ ↦ ((sinβ€˜(i Β· π‘₯)) / i))

Detailed syntax breakdown of Definition df-sinh
StepHypRef Expression
1 csinh 47775 . 2 class sinh
2 vx . . 3 setvar π‘₯
3 cc 11108 . . 3 class β„‚
4 ci 11112 . . . . . 6 class i
52cv 1541 . . . . . 6 class π‘₯
6 cmul 11115 . . . . . 6 class Β·
74, 5, 6co 7409 . . . . 5 class (i Β· π‘₯)
8 csin 16007 . . . . 5 class sin
97, 8cfv 6544 . . . 4 class (sinβ€˜(i Β· π‘₯))
10 cdiv 11871 . . . 4 class /
119, 4, 10co 7409 . . 3 class ((sinβ€˜(i Β· π‘₯)) / i)
122, 3, 11cmpt 5232 . 2 class (π‘₯ ∈ β„‚ ↦ ((sinβ€˜(i Β· π‘₯)) / i))
131, 12wceq 1542 1 wff sinh = (π‘₯ ∈ β„‚ ↦ ((sinβ€˜(i Β· π‘₯)) / i))
Colors of variables: wff setvar class
This definition is referenced by:  sinhval-named  47781
  Copyright terms: Public domain W3C validator