Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-sinh | Structured version Visualization version GIF version |
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5161, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). See sinhval-named 46390 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 46393 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
Ref | Expression |
---|---|
df-sinh | ⊢ sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csinh 46384 | . 2 class sinh | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cc 10853 | . . 3 class ℂ | |
4 | ci 10857 | . . . . . 6 class i | |
5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
6 | cmul 10860 | . . . . . 6 class · | |
7 | 4, 5, 6 | co 7268 | . . . . 5 class (i · 𝑥) |
8 | csin 15754 | . . . . 5 class sin | |
9 | 7, 8 | cfv 6430 | . . . 4 class (sin‘(i · 𝑥)) |
10 | cdiv 11615 | . . . 4 class / | |
11 | 9, 4, 10 | co 7268 | . . 3 class ((sin‘(i · 𝑥)) / i) |
12 | 2, 3, 11 | cmpt 5161 | . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
13 | 1, 12 | wceq 1541 | 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
Colors of variables: wff setvar class |
This definition is referenced by: sinhval-named 46390 |
Copyright terms: Public domain | W3C validator |