![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-sinh | Structured version Visualization version GIF version |
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5249, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). See sinhval-named 48828 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 48831 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
Ref | Expression |
---|---|
df-sinh | ⊢ sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csinh 48822 | . 2 class sinh | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cc 11182 | . . 3 class ℂ | |
4 | ci 11186 | . . . . . 6 class i | |
5 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
6 | cmul 11189 | . . . . . 6 class · | |
7 | 4, 5, 6 | co 7448 | . . . . 5 class (i · 𝑥) |
8 | csin 16111 | . . . . 5 class sin | |
9 | 7, 8 | cfv 6573 | . . . 4 class (sin‘(i · 𝑥)) |
10 | cdiv 11947 | . . . 4 class / | |
11 | 9, 4, 10 | co 7448 | . . 3 class ((sin‘(i · 𝑥)) / i) |
12 | 2, 3, 11 | cmpt 5249 | . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
13 | 1, 12 | wceq 1537 | 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) |
Colors of variables: wff setvar class |
This definition is referenced by: sinhval-named 48828 |
Copyright terms: Public domain | W3C validator |