Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sinh Structured version   Visualization version   GIF version

Definition df-sinh 49764
Description: Define the hyperbolic sine function (sinh). We define it this way for cmpt 5172, which requires the form (𝑥𝐴𝐵). See sinhval-named 49767 for a simple way to evaluate it. We define this function by dividing by i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in set.mm). See sinh-conventional 49770 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
df-sinh sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))

Detailed syntax breakdown of Definition df-sinh
StepHypRef Expression
1 csinh 49761 . 2 class sinh
2 vx . . 3 setvar 𝑥
3 cc 11001 . . 3 class
4 ci 11005 . . . . . 6 class i
52cv 1540 . . . . . 6 class 𝑥
6 cmul 11008 . . . . . 6 class ·
74, 5, 6co 7346 . . . . 5 class (i · 𝑥)
8 csin 15967 . . . . 5 class sin
97, 8cfv 6481 . . . 4 class (sin‘(i · 𝑥))
10 cdiv 11771 . . . 4 class /
119, 4, 10co 7346 . . 3 class ((sin‘(i · 𝑥)) / i)
122, 3, 11cmpt 5172 . 2 class (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
131, 12wceq 1541 1 wff sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
Colors of variables: wff setvar class
This definition is referenced by:  sinhval-named  49767
  Copyright terms: Public domain W3C validator