| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-cosh | Structured version Visualization version GIF version | ||
| Description: Define the hyperbolic cosine function (cosh). We define it this way for cmpt 5196, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| df-cosh | ⊢ cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccosh 49597 | . 2 class cosh | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11084 | . . 3 class ℂ | |
| 4 | ci 11088 | . . . . 5 class i | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | cmul 11091 | . . . . 5 class · | |
| 7 | 4, 5, 6 | co 7394 | . . . 4 class (i · 𝑥) |
| 8 | ccos 16037 | . . . 4 class cos | |
| 9 | 7, 8 | cfv 6519 | . . 3 class (cos‘(i · 𝑥)) |
| 10 | 2, 3, 9 | cmpt 5196 | . 2 class (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) |
| 11 | 1, 10 | wceq 1540 | 1 wff cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: coshval-named 49603 |
| Copyright terms: Public domain | W3C validator |