|   | Mathbox for David A. Wheeler | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-cosh | Structured version Visualization version GIF version | ||
| Description: Define the hyperbolic cosine function (cosh). We define it this way for cmpt 5225, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by David A. Wheeler, 10-May-2015.) | 
| Ref | Expression | 
|---|---|
| df-cosh | ⊢ cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ccosh 49250 | . 2 class cosh | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11153 | . . 3 class ℂ | |
| 4 | ci 11157 | . . . . 5 class i | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 | 
| 6 | cmul 11160 | . . . . 5 class · | |
| 7 | 4, 5, 6 | co 7431 | . . . 4 class (i · 𝑥) | 
| 8 | ccos 16100 | . . . 4 class cos | |
| 9 | 7, 8 | cfv 6561 | . . 3 class (cos‘(i · 𝑥)) | 
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) | 
| 11 | 1, 10 | wceq 1540 | 1 wff cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: coshval-named 49256 | 
| Copyright terms: Public domain | W3C validator |