Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinhval-named Structured version   Visualization version   GIF version

Theorem sinhval-named 48275
Description: Value of the named sinh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-sinh 48272. See sinhval 16125 for a theorem to convert this further. See sinh-conventional 48278 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
sinhval-named (𝐴 ∈ β„‚ β†’ (sinhβ€˜π΄) = ((sinβ€˜(i Β· 𝐴)) / i))

Proof of Theorem sinhval-named
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 oveq2 7421 . . . 4 (π‘₯ = 𝐴 β†’ (i Β· π‘₯) = (i Β· 𝐴))
21fveq2d 6894 . . 3 (π‘₯ = 𝐴 β†’ (sinβ€˜(i Β· π‘₯)) = (sinβ€˜(i Β· 𝐴)))
32oveq1d 7428 . 2 (π‘₯ = 𝐴 β†’ ((sinβ€˜(i Β· π‘₯)) / i) = ((sinβ€˜(i Β· 𝐴)) / i))
4 df-sinh 48272 . 2 sinh = (π‘₯ ∈ β„‚ ↦ ((sinβ€˜(i Β· π‘₯)) / i))
5 ovex 7446 . 2 ((sinβ€˜(i Β· 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6998 1 (𝐴 ∈ β„‚ β†’ (sinhβ€˜π΄) = ((sinβ€˜(i Β· 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  β€˜cfv 6543  (class class class)co 7413  β„‚cc 11131  ici 11135   Β· cmul 11138   / cdiv 11896  sincsin 16034  sinhcsinh 48269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7416  df-sinh 48272
This theorem is referenced by:  sinh-conventional  48278  sinhpcosh  48279
  Copyright terms: Public domain W3C validator