![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinhval-named | Structured version Visualization version GIF version |
Description: Value of the named sinh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-sinh 47778. See sinhval 16097 for a theorem to convert this further. See sinh-conventional 47784 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
Ref | Expression |
---|---|
sinhval-named | β’ (π΄ β β β (sinhβπ΄) = ((sinβ(i Β· π΄)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7417 | . . . 4 β’ (π₯ = π΄ β (i Β· π₯) = (i Β· π΄)) | |
2 | 1 | fveq2d 6896 | . . 3 β’ (π₯ = π΄ β (sinβ(i Β· π₯)) = (sinβ(i Β· π΄))) |
3 | 2 | oveq1d 7424 | . 2 β’ (π₯ = π΄ β ((sinβ(i Β· π₯)) / i) = ((sinβ(i Β· π΄)) / i)) |
4 | df-sinh 47778 | . 2 β’ sinh = (π₯ β β β¦ ((sinβ(i Β· π₯)) / i)) | |
5 | ovex 7442 | . 2 β’ ((sinβ(i Β· π΄)) / i) β V | |
6 | 3, 4, 5 | fvmpt 6999 | 1 β’ (π΄ β β β (sinhβπ΄) = ((sinβ(i Β· π΄)) / i)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 βcc 11108 ici 11112 Β· cmul 11115 / cdiv 11871 sincsin 16007 sinhcsinh 47775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-sinh 47778 |
This theorem is referenced by: sinh-conventional 47784 sinhpcosh 47785 |
Copyright terms: Public domain | W3C validator |