| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sinhval-named | Structured version Visualization version GIF version | ||
| Description: Value of the named sinh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-sinh 49722. See sinhval 16122 for a theorem to convert this further. See sinh-conventional 49728 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| sinhval-named | ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 2 | 1 | fveq2d 6862 | . . 3 ⊢ (𝑥 = 𝐴 → (sin‘(i · 𝑥)) = (sin‘(i · 𝐴))) |
| 3 | 2 | oveq1d 7402 | . 2 ⊢ (𝑥 = 𝐴 → ((sin‘(i · 𝑥)) / i) = ((sin‘(i · 𝐴)) / i)) |
| 4 | df-sinh 49722 | . 2 ⊢ sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i)) | |
| 5 | ovex 7420 | . 2 ⊢ ((sin‘(i · 𝐴)) / i) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6968 | 1 ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ici 11070 · cmul 11073 / cdiv 11835 sincsin 16029 sinhcsinh 49719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-sinh 49722 |
| This theorem is referenced by: sinh-conventional 49728 sinhpcosh 49729 |
| Copyright terms: Public domain | W3C validator |