Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinhval-named Structured version   Visualization version   GIF version

Theorem sinhval-named 44834
Description: Value of the named sinh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-sinh 44831. See sinhval 15506 for a theorem to convert this further. See sinh-conventional 44837 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
sinhval-named (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i))

Proof of Theorem sinhval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7163 . . . 4 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6673 . . 3 (𝑥 = 𝐴 → (sin‘(i · 𝑥)) = (sin‘(i · 𝐴)))
32oveq1d 7170 . 2 (𝑥 = 𝐴 → ((sin‘(i · 𝑥)) / i) = ((sin‘(i · 𝐴)) / i))
4 df-sinh 44831 . 2 sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
5 ovex 7188 . 2 ((sin‘(i · 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6767 1 (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6354  (class class class)co 7155  cc 10534  ici 10538   · cmul 10541   / cdiv 11296  sincsin 15416  sinhcsinh 44828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7158  df-sinh 44831
This theorem is referenced by:  sinh-conventional  44837  sinhpcosh  44838
  Copyright terms: Public domain W3C validator