Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinhval-named Structured version   Visualization version   GIF version

Theorem sinhval-named 49897
Description: Value of the named sinh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-sinh 49894. See sinhval 16070 for a theorem to convert this further. See sinh-conventional 49900 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
Assertion
Ref Expression
sinhval-named (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i))

Proof of Theorem sinhval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7363 . . . 4 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6835 . . 3 (𝑥 = 𝐴 → (sin‘(i · 𝑥)) = (sin‘(i · 𝐴)))
32oveq1d 7370 . 2 (𝑥 = 𝐴 → ((sin‘(i · 𝑥)) / i) = ((sin‘(i · 𝐴)) / i))
4 df-sinh 49894 . 2 sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
5 ovex 7388 . 2 ((sin‘(i · 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6938 1 (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  cc 11015  ici 11019   · cmul 11022   / cdiv 11785  sincsin 15977  sinhcsinh 49891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-sinh 49894
This theorem is referenced by:  sinh-conventional  49900  sinhpcosh  49901
  Copyright terms: Public domain W3C validator