![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinhval-named | Structured version Visualization version GIF version |
Description: Value of the named sinh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-sinh 48272. See sinhval 16125 for a theorem to convert this further. See sinh-conventional 48278 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.) |
Ref | Expression |
---|---|
sinhval-named | β’ (π΄ β β β (sinhβπ΄) = ((sinβ(i Β· π΄)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7421 | . . . 4 β’ (π₯ = π΄ β (i Β· π₯) = (i Β· π΄)) | |
2 | 1 | fveq2d 6894 | . . 3 β’ (π₯ = π΄ β (sinβ(i Β· π₯)) = (sinβ(i Β· π΄))) |
3 | 2 | oveq1d 7428 | . 2 β’ (π₯ = π΄ β ((sinβ(i Β· π₯)) / i) = ((sinβ(i Β· π΄)) / i)) |
4 | df-sinh 48272 | . 2 β’ sinh = (π₯ β β β¦ ((sinβ(i Β· π₯)) / i)) | |
5 | ovex 7446 | . 2 β’ ((sinβ(i Β· π΄)) / i) β V | |
6 | 3, 4, 5 | fvmpt 6998 | 1 β’ (π΄ β β β (sinhβπ΄) = ((sinβ(i Β· π΄)) / i)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6543 (class class class)co 7413 βcc 11131 ici 11135 Β· cmul 11138 / cdiv 11896 sincsin 16034 sinhcsinh 48269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7416 df-sinh 48272 |
This theorem is referenced by: sinh-conventional 48278 sinhpcosh 48279 |
Copyright terms: Public domain | W3C validator |