MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sm Structured version   Visualization version   GIF version

Definition df-sm 28938
Description: Define scalar multiplication on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-sm ·𝑠OLD = (2nd ∘ 1st )

Detailed syntax breakdown of Definition df-sm
StepHypRef Expression
1 cns 28928 . 2 class ·𝑠OLD
2 c2nd 7816 . . 3 class 2nd
3 c1st 7815 . . 3 class 1st
42, 3ccom 5592 . 2 class (2nd ∘ 1st )
51, 4wceq 1541 1 wff ·𝑠OLD = (2nd ∘ 1st )
Colors of variables: wff setvar class
This definition is referenced by:  smfval  28946
  Copyright terms: Public domain W3C validator