MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-0v Structured version   Visualization version   GIF version

Definition df-0v 29005
Description: Define the zero vector in a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-0v 0vec = (GId ∘ +𝑣 )

Detailed syntax breakdown of Definition df-0v
StepHypRef Expression
1 cn0v 28995 . 2 class 0vec
2 cgi 28897 . . 3 class GId
3 cpv 28992 . . 3 class +𝑣
42, 3ccom 5604 . 2 class (GId ∘ +𝑣 )
51, 4wceq 1539 1 wff 0vec = (GId ∘ +𝑣 )
Colors of variables: wff setvar class
This definition is referenced by:  0vfval  29013
  Copyright terms: Public domain W3C validator