| Metamath
Proof Explorer Theorem List (p. 302 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | clwlknf1oclwwlknlem2 30101* | Lemma 2 for clwlknf1oclwwlkn 30103: The closed walks of a positive length are nonempty closed walks of this length. (Contributed by AV, 26-May-2022.) |
| ⊢ (𝑁 ∈ ℕ → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st ‘𝑐)) ∧ (♯‘(1st ‘𝑐)) = 𝑁)}) | ||
| Theorem | clwlknf1oclwwlknlem3 30102* | Lemma 3 for clwlknf1oclwwlkn 30103: The bijective function of clwlknf1oclwwlkn 30103 is the bijective function of clwlkclwwlkf1o 30030 restricted to the closed walks with a fixed positive length. (Contributed by AV, 26-May-2022.) (Revised by AV, 1-Nov-2022.) |
| ⊢ 𝐴 = (1st ‘𝑐) & ⊢ 𝐵 = (2nd ‘𝑐) & ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} & ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴))) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st ‘𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶)) | ||
| Theorem | clwlknf1oclwwlkn 30103* | There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.) |
| ⊢ 𝐴 = (1st ‘𝑐) & ⊢ 𝐵 = (2nd ‘𝑐) & ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} & ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 prefix (♯‘𝐴))) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶–1-1-onto→(𝑁 ClWWalksN 𝐺)) | ||
| Theorem | clwlkssizeeq 30104* | The size of the set of closed walks as words of length 𝑁 corresponds to the size of the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.) (Revised by AV, 26-May-2022.) (Proof shortened by AV, 3-Nov-2022.) |
| ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁})) | ||
| Theorem | clwlksndivn 30105* | The size of the set of closed walks of prime length 𝑁 is divisible by 𝑁. This corresponds to statement 9 in [Huneke] p. 2: "It follows that, if p is a prime number, then the number of closed walks of length p is divisible by p". (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.) |
| ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) | ||
| Syntax | cclwwlknon 30106 | Extend class notation with closed walks (in an undirected graph) anchored at a fixed vertex and of a fixed length as word over the set of vertices. |
| class ClWWalksNOn | ||
| Definition | df-clwwlknon 30107* | Define the set of all closed walks a graph 𝑔, anchored at a fixed vertex 𝑣 (i.e., a walk starting and ending at the fixed vertex 𝑣, also called "a closed walk on vertex 𝑣") and having a fixed length 𝑛 as words over the set of vertices. Such a word corresponds to the sequence v=p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0)=v as defined in df-clwlks 29791. The set ((𝑣(ClWWalksNOn‘𝑔)𝑛) corresponds to the set of "walks from v to v of length n" in a statement of [Huneke] p. 2. (Contributed by AV, 24-Feb-2022.) |
| ⊢ ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣})) | ||
| Theorem | clwwlknonmpo 30108* | (ClWWalksNOn‘𝐺) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | ||
| Theorem | clwwlknon 30109* | The set of closed walks on vertex 𝑋 of length 𝑁 in a graph 𝐺 as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.) |
| ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | ||
| Theorem | isclwwlknon 30110 | A word over the set of vertices representing a closed walk on vertex 𝑋 of length 𝑁 in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) (Revised by AV, 24-Mar-2022.) |
| ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | ||
| Theorem | clwwlk0on0 30111 | There is no word over the set of vertices representing a closed walk on vertex 𝑋 of length 0 in a graph 𝐺. (Contributed by AV, 17-Feb-2022.) (Revised by AV, 25-Feb-2022.) |
| ⊢ (𝑋(ClWWalksNOn‘𝐺)0) = ∅ | ||
| Theorem | clwwlknon0 30112 | Sufficient conditions for ClWWalksNOn to be empty. (Contributed by AV, 25-Mar-2022.) |
| ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅) | ||
| Theorem | clwwlknonfin 30113 | In a finite graph 𝐺, the set of closed walks on vertex 𝑋 of length 𝑁 is also finite. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 24-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin) | ||
| Theorem | clwwlknonel 30114* | Characterization of a word over the set of vertices representing a closed walk on vertex 𝑋 of (nonzero) length 𝑁 in a graph 𝐺. This theorem would not hold for 𝑁 = 0 if 𝑊 = 𝑋 = ∅. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) | ||
| Theorem | clwwlknonccat 30115 | The concatenation of two words representing closed walks on a vertex 𝑋 represents a closed walk on vertex 𝑋. The resulting walk is a "double loop", starting at vertex 𝑋, coming back to 𝑋 by the first walk, following the second walk and finally coming back to 𝑋 again. (Contributed by AV, 24-Apr-2022.) |
| ⊢ ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁))) | ||
| Theorem | clwwlknon1 30116* | The set of closed walks on vertex 𝑋 of length 1 in a graph 𝐺 as words over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 24-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (ClWWalksNOn‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) | ||
| Theorem | clwwlknon1loop 30117 | If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (ClWWalksNOn‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) | ||
| Theorem | clwwlknon1nloop 30118 | If there is no loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (ClWWalksNOn‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) | ||
| Theorem | clwwlknon1sn 30119 | The set of (closed) walks on vertex 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋 iff there is a loop at 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (ClWWalksNOn‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑋} ∈ 𝐸)) | ||
| Theorem | clwwlknon1le1 30120 | There is at most one (closed) walk on vertex 𝑋 of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
| ⊢ (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1 | ||
| Theorem | clwwlknon2 30121* | The set of closed walks on vertex 𝑋 of length 2 in a graph 𝐺 as words over the set of vertices. (Contributed by AV, 5-Mar-2022.) (Revised by AV, 25-Mar-2022.) |
| ⊢ 𝐶 = (ClWWalksNOn‘𝐺) ⇒ ⊢ (𝑋𝐶2) = {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | ||
| Theorem | clwwlknon2x 30122* | The set of closed walks on vertex 𝑋 of length 2 in a graph 𝐺 as words over the set of vertices, definition of ClWWalksN expanded. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Mar-2022.) |
| ⊢ 𝐶 = (ClWWalksNOn‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} | ||
| Theorem | s2elclwwlknon2 30123 | Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.) |
| ⊢ 𝐶 = (ClWWalksNOn‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) | ||
| Theorem | clwwlknon2num 30124 | In a 𝐾-regular graph 𝐺, there are 𝐾 closed walks on vertex 𝑋 of length 2. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
| ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) | ||
| Theorem | clwwlknonwwlknonb 30125 | A word over vertices represents a closed walk of a fixed length 𝑁 on vertex 𝑋 iff the word concatenated with 𝑋 represents a walk of length 𝑁 on 𝑋 and 𝑋. This theorem would not hold for 𝑁 = 0 and 𝑊 = ∅, see clwwlknwwlksnb 30074. (Contributed by AV, 4-Mar-2022.) (Revised by AV, 27-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ++ 〈“𝑋”〉) ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑋))) | ||
| Theorem | clwwlknonex2lem1 30126 | Lemma 1 for clwwlknonex2 30128: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) | ||
| Theorem | clwwlknonex2lem2 30127* | Lemma 2 for clwwlknonex2 30128: Transformation of a walk and two edges into a walk extended by two vertices/edges. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 27-Jan-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝑖), (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑖 + 1))} ∈ 𝐸) | ||
| Theorem | clwwlknonex2 30128 | Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 28-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺)) | ||
| Theorem | clwwlknonex2e 30129 | Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) | ||
| Theorem | clwwlknondisj 30130* | The sets of closed walks on different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
| ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) | ||
| Theorem | clwwlknun 30131* | The set of closed walks of fixed length 𝑁 in a simple graph 𝐺 is the union of the closed walks of the fixed length 𝑁 on each of the vertices of graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) | ||
| Theorem | clwwlkvbij 30132* | There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 7-Jul-2022.) (Proof shortened by AV, 2-Nov-2022.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) | ||
| Theorem | 0ewlk 30133 | The empty set (empty sequence of edges) is an s-walk of edges for all s. (Contributed by AV, 4-Jan-2021.) |
| ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) | ||
| Theorem | 1ewlk 30134 | A sequence of 1 edge is an s-walk of edges for all s. (Contributed by AV, 5-Jan-2021.) |
| ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom (iEdg‘𝐺)) → 〈“𝐼”〉 ∈ (𝐺 EdgWalks 𝑆)) | ||
| Theorem | 0wlk 30135 | A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | is0wlk 30136 | A pair of an empty set (of edges) and a sequence of one vertex is a walk (of length 0). (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃 = {〈0, 𝑁〉} ∧ 𝑁 ∈ 𝑉) → ∅(Walks‘𝐺)𝑃) | ||
| Theorem | 0wlkonlem1 30137 | Lemma 1 for 0wlkon 30139 and 0trlon 30143. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) | ||
| Theorem | 0wlkonlem2 30138 | Lemma 2 for 0wlkon 30139 and 0trlon 30143. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) | ||
| Theorem | 0wlkon 30139 | A walk of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(WalksOn‘𝐺)𝑁)𝑃) | ||
| Theorem | 0wlkons1 30140 | A walk of length 0 from a vertex to itself. (Contributed by AV, 17-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(WalksOn‘𝐺)𝑁)〈“𝑁”〉) | ||
| Theorem | 0trl 30141 | A pair of an empty set (of edges) and a second set (of vertices) is a trail iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | is0trl 30142 | A pair of an empty set (of edges) and a sequence of one vertex is a trail (of length 0). (Contributed by AV, 7-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃 = {〈0, 𝑁〉} ∧ 𝑁 ∈ 𝑉) → ∅(Trails‘𝐺)𝑃) | ||
| Theorem | 0trlon 30143 | A trail of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 8-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃) | ||
| Theorem | 0pth 30144 | A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | 0spth 30145 | A pair of an empty set (of edges) and a second set (of vertices) is a simple path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 18-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (∅(SPaths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | 0pthon 30146 | A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 20-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) | ||
| Theorem | 0pthon1 30147 | A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 20-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉}) | ||
| Theorem | 0pthonv 30148* | For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 21-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) | ||
| Theorem | 0clwlk 30149 | A pair of an empty set (of edges) and a second set (of vertices) is a closed walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 17-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | 0clwlkv 30150 | Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) | ||
| Theorem | 0clwlk0 30151 | There is no closed walk in the empty set (i.e. the null graph). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ (ClWalks‘∅) = ∅ | ||
| Theorem | 0crct 30152 | A pair of an empty set (of edges) and a second set (of vertices) is a circuit if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ (𝐺 ∈ 𝑊 → (∅(Circuits‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶(Vtx‘𝐺))) | ||
| Theorem | 0cycl 30153 | A pair of an empty set (of edges) and a second set (of vertices) is a cycle if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ (𝐺 ∈ 𝑊 → (∅(Cycles‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶(Vtx‘𝐺))) | ||
| Theorem | 1pthdlem1 30154 | Lemma 1 for 1pthd 30162. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 ⇒ ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) | ||
| Theorem | 1pthdlem2 30155 | Lemma 2 for 1pthd 30162. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 ⇒ ⊢ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ | ||
| Theorem | 1wlkdlem1 30156 | Lemma 1 for 1wlkd 30160. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||
| Theorem | 1wlkdlem2 30157 | Lemma 2 for 1wlkd 30160. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) | ||
| Theorem | 1wlkdlem3 30158 | Lemma 3 for 1wlkd 30160. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | ||
| Theorem | 1wlkdlem4 30159* | Lemma 4 for 1wlkd 30160. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | 1wlkd 30160 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | 1trld 30161 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | 1pthd 30162 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | 1pthond 30163 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | ||
| Theorem | upgr1wlkdlem1 30164 | Lemma 1 for upgr1wlkd 30166. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) ⇒ ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) | ||
| Theorem | upgr1wlkdlem2 30165 | Lemma 2 for upgr1wlkd 30166. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) | ||
| Theorem | upgr1wlkd 30166 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | upgr1trld 30167 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | upgr1pthd 30168 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | upgr1pthond 30169 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | ||
| Theorem | lppthon 30170 | A loop (which is an edge at index 𝐽) induces a path of length 1 from a vertex to itself in a hypergraph. (Contributed by AV, 1-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(𝐴(PathsOn‘𝐺)𝐴)〈“𝐴𝐴”〉) | ||
| Theorem | lp1cycl 30171 | A loop (which is an edge at index 𝐽) induces a cycle of length 1 in a hypergraph. (Contributed by AV, 2-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(Cycles‘𝐺)〈“𝐴𝐴”〉) | ||
| Theorem | 1pthon2v 30172* | For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | ||
| Theorem | 1pthon2ve 30173* | For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Proof shortened by AV, 15-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | ||
| Theorem | wlk2v2elem1 30174 | Lemma 1 for wlk2v2e 30176: 𝐹 is a length 2 word of over {0}, the domain of the singleton word 𝐼. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 ⇒ ⊢ 𝐹 ∈ Word dom 𝐼 | ||
| Theorem | wlk2v2elem2 30175* | Lemma 2 for wlk2v2e 30176: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 ⇒ ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} | ||
| Theorem | wlk2v2e 30176 | In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 & ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 ⇒ ⊢ 𝐹(Walks‘𝐺)𝑃 | ||
| Theorem | ntrl2v2e 30177 | A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e 30176, but not a trail. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 & ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 ⇒ ⊢ ¬ 𝐹(Trails‘𝐺)𝑃 | ||
| Theorem | 3wlkdlem1 30178 | Lemma 1 for 3wlkd 30189. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 ⇒ ⊢ (♯‘𝑃) = ((♯‘𝐹) + 1) | ||
| Theorem | 3wlkdlem2 30179 | Lemma 2 for 3wlkd 30189. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 ⇒ ⊢ (0..^(♯‘𝐹)) = {0, 1, 2} | ||
| Theorem | 3wlkdlem3 30180 | Lemma 3 for 3wlkd 30189. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) ⇒ ⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) | ||
| Theorem | 3wlkdlem4 30181* | Lemma 4 for 3wlkd 30189. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) | ||
| Theorem | 3wlkdlem5 30182* | Lemma 5 for 3wlkd 30189. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Theorem | 3pthdlem1 30183* | Lemma 1 for 3pthd 30193. (Contributed by AV, 9-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) | ||
| Theorem | 3wlkdlem6 30184 | Lemma 6 for 3wlkd 30189. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿))) | ||
| Theorem | 3wlkdlem7 30185 | Lemma 7 for 3wlkd 30189. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V)) | ||
| Theorem | 3wlkdlem8 30186 | Lemma 8 for 3wlkd 30189. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿)) | ||
| Theorem | 3wlkdlem9 30187 | Lemma 9 for 3wlkd 30189. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))) | ||
| Theorem | 3wlkdlem10 30188* | Lemma 10 for 3wlkd 30189. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | ||
| Theorem | 3wlkd 30189 | Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | 3wlkond 30190 | A walk of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3trld 30191 | Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | 3trlond 30192 | A trail of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3pthd 30193 | A path of length 3 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | 3pthond 30194 | A path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3spthd 30195 | A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | 3spthond 30196 | A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → 𝐹(𝐴(SPathsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3cycld 30197 | Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 = 𝐷) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | 3cyclpd 30198 | Construction of a 3-cycle from three given edges in a graph, containing an endpoint of one of these edges. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3 ∧ (𝑃‘0) = 𝐴)) | ||
| Theorem | upgr3v3e3cycl 30199* | If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))) | ||
| Theorem | uhgr3cyclexlem 30200 | Lemma for uhgr3cyclex 30201. (Contributed by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → 𝐽 ≠ 𝐾) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |