Home | Metamath
Proof Explorer Theorem List (p. 302 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Note on operators. Unlike some authors, we use the term "operator" to mean any function from ℋ to ℋ. This is the definition of operator in [Hughes] p. 14, the definition of operator in [AkhiezerGlazman] p. 30, and the definition of operator in [Goldberg] p. 10. For Reed and Simon, an operator is linear (definition of operator in [ReedSimon] p. 2). For Halmos, an operator is bounded and linear (definition of operator in [Halmos] p. 35). For Kalmbach and Beran, an operator is continuous and linear (definition of operator in [Kalmbach] p. 353; definition of operator in [Beran] p. 99). Note that "bounded and linear" and "continuous and linear" are equivalent by lncnbd 30409. | ||
Definition | df-hosum 30101* | Define the sum of two Hilbert space operators. Definition of [Beran] p. 111. (Contributed by NM, 9-Nov-2000.) (New usage is discouraged.) |
⊢ +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) | ||
Definition | df-homul 30102* | Define the scalar product with a Hilbert space operator. Definition of [Beran] p. 111. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥)))) | ||
Definition | df-hodif 30103* | Define the difference of two Hilbert space operators. Definition of [Beran] p. 111. (Contributed by NM, 9-Nov-2000.) (New usage is discouraged.) |
⊢ −op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)))) | ||
Definition | df-hfsum 30104* | Define the sum of two Hilbert space functionals. Definition of [Beran] p. 111. Note that unlike some authors, we define a functional as any function from ℋ to ℂ, not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) | ||
Definition | df-hfmul 30105* | Define the scalar product with a Hilbert space functional. Definition of [Beran] p. 111. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) | ||
Theorem | hosmval 30106* | Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) | ||
Theorem | hommval 30107* | Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | ||
Theorem | hodmval 30108* | Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) | ||
Theorem | hfsmval 30109* | Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) | ||
Theorem | hfmmval 30110* | Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) | ||
Theorem | hosval 30111 | Value of the sum of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) | ||
Theorem | homval 30112 | Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
Theorem | hodval 30113 | Value of the difference of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝐴) = ((𝑆‘𝐴) −ℎ (𝑇‘𝐴))) | ||
Theorem | hfsval 30114 | Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) | ||
Theorem | hfmval 30115 | Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·fn 𝑇)‘𝐵) = (𝐴 · (𝑇‘𝐵))) | ||
Theorem | hoscl 30116 | Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) ∈ ℋ) | ||
Theorem | homcl 30117 | Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) ∈ ℋ) | ||
Theorem | hodcl 30118 | Closure of the difference of two Hilbert space operators. (Contributed by NM, 15-Nov-2002.) (New usage is discouraged.) |
⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝐴) ∈ ℋ) | ||
Definition | df-h0op 30119 | Define the Hilbert space zero operator. See df0op2 30123 for alternate definition. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ 0hop = (projℎ‘0ℋ) | ||
Definition | df-iop 30120 | Define the Hilbert space identity operator. See dfiop2 30124 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
⊢ Iop = (projℎ‘ ℋ) | ||
Theorem | ho0val 30121 | Value of the zero Hilbert space operator (null projector). Remark in [Beran] p. 111. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ( 0hop ‘𝐴) = 0ℎ) | ||
Theorem | ho0f 30122 | Functionality of the zero Hilbert space operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 0hop : ℋ⟶ ℋ | ||
Theorem | df0op2 30123 | Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006.) (New usage is discouraged.) |
⊢ 0hop = ( ℋ × 0ℋ) | ||
Theorem | dfiop2 30124 | Alternate definition of Hilbert space identity operator. (Contributed by NM, 7-Aug-2006.) (New usage is discouraged.) |
⊢ Iop = ( I ↾ ℋ) | ||
Theorem | hoif 30125 | Functionality of the Hilbert space identity operator. (Contributed by NM, 8-Aug-2006.) (New usage is discouraged.) |
⊢ Iop : ℋ–1-1-onto→ ℋ | ||
Theorem | hoival 30126 | The value of the Hilbert space identity operator. (Contributed by NM, 8-Aug-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → ( Iop ‘𝐴) = 𝐴) | ||
Theorem | hoico1 30127 | Composition with the Hilbert space identity operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∘ Iop ) = 𝑇) | ||
Theorem | hoico2 30128 | Composition with the Hilbert space identity operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ( Iop ∘ 𝑇) = 𝑇) | ||
Theorem | hoaddcl 30129 | The sum of Hilbert space operators is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ) | ||
Theorem | homulcl 30130 | The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ) | ||
Theorem | hoeq 30131* | Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥) ↔ 𝑇 = 𝑈)) | ||
Theorem | hoeqi 30132* | Equality of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥) ↔ 𝑆 = 𝑇) | ||
Theorem | hoscli 30133 | Closure of Hilbert space operator sum. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((𝑆 +op 𝑇)‘𝐴) ∈ ℋ) | ||
Theorem | hodcli 30134 | Closure of Hilbert space operator difference. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((𝑆 −op 𝑇)‘𝐴) ∈ ℋ) | ||
Theorem | hocoi 30135 | Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) = (𝑆‘(𝑇‘𝐴))) | ||
Theorem | hococli 30136 | Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) ∈ ℋ) | ||
Theorem | hocofi 30137 | Mapping of composition of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ | ||
Theorem | hocofni 30138 | Functionality of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 ∘ 𝑇) Fn ℋ | ||
Theorem | hoaddcli 30139 | Mapping of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ | ||
Theorem | hosubcli 30140 | Mapping of difference of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ | ||
Theorem | hoaddfni 30141 | Functionality of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op 𝑇) Fn ℋ | ||
Theorem | hosubfni 30142 | Functionality of difference of Hilbert space operators. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 −op 𝑇) Fn ℋ | ||
Theorem | hoaddcomi 30143 | Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) | ||
Theorem | hosubcl 30144 | Mapping of difference of Hilbert space operators. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇): ℋ⟶ ℋ) | ||
Theorem | hoaddcom 30145 | Commutativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑇 +op 𝑆)) | ||
Theorem | hodsi 30146 | Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) | ||
Theorem | hoaddassi 30147 | Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) | ||
Theorem | hoadd12i 30148 | Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) | ||
Theorem | hoadd32i 30149 | Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) | ||
Theorem | hocadddiri 30150 | Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) | ||
Theorem | hocsubdiri 30151 | Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) | ||
Theorem | ho2coi 30152 | Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) | ||
Theorem | hoaddass 30153 | Associativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))) | ||
Theorem | hoadd32 30154 | Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)) | ||
Theorem | hoadd4 30155 | Rearrangement of 4 terms in a sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) +op (𝑇 +op 𝑈)) = ((𝑅 +op 𝑇) +op (𝑆 +op 𝑈))) | ||
Theorem | hocsubdir 30156 | Distributive law for Hilbert space operator difference. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) | ||
Theorem | hoaddid1i 30157 | Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 0hop ) = 𝑇 | ||
Theorem | hodidi 30158 | Difference of a Hilbert space operator from itself. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 −op 𝑇) = 0hop | ||
Theorem | ho0coi 30159 | Composition of the zero operator and a Hilbert space operator. (Contributed by NM, 9-Aug-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ( 0hop ∘ 𝑇) = 0hop | ||
Theorem | hoid1i 30160 | Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 ∘ Iop ) = 𝑇 | ||
Theorem | hoid1ri 30161 | Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ( Iop ∘ 𝑇) = 𝑇 | ||
Theorem | hoaddid1 30162 | Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 0hop ) = 𝑇) | ||
Theorem | hodid 30163 | Difference of a Hilbert space operator from itself. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 −op 𝑇) = 0hop ) | ||
Theorem | hon0 30164 | A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) | ||
Theorem | hodseqi 30165 | Subtraction and addition of equal Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇 | ||
Theorem | ho0subi 30166 | Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 −op 𝑇) = (𝑆 +op ( 0hop −op 𝑇)) | ||
Theorem | honegsubi 30167 | Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) | ||
Theorem | ho0sub 30168 | Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑆 +op ( 0hop −op 𝑇))) | ||
Theorem | hosubid1 30169 | The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 −op 0hop ) = 𝑇) | ||
Theorem | honegsub 30170 | Relationship between Hilbert space operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op (-1 ·op 𝑈)) = (𝑇 −op 𝑈)) | ||
Theorem | homulid2 30171 | An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | ||
Theorem | homco1 30172 | Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
Theorem | homulass 30173 | Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))) | ||
Theorem | hoadddi 30174 | Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))) | ||
Theorem | hoadddir 30175 | Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))) | ||
Theorem | homul12 30176 | Swap first and second factors in a nested operator scalar product. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)) = (𝐵 ·op (𝐴 ·op 𝑇))) | ||
Theorem | honegneg 30177 | Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) | ||
Theorem | hosubneg 30178 | Relationship between operator subtraction and negative. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 −op (-1 ·op 𝑈)) = (𝑇 +op 𝑈)) | ||
Theorem | hosubdi 30179 | Scalar product distributive law for operator difference. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 −op 𝑈)) = ((𝐴 ·op 𝑇) −op (𝐴 ·op 𝑈))) | ||
Theorem | honegdi 30180 | Distribution of negative over addition. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 +op 𝑈)) = ((-1 ·op 𝑇) +op (-1 ·op 𝑈))) | ||
Theorem | honegsubdi 30181 | Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 −op 𝑈)) = ((-1 ·op 𝑇) +op 𝑈)) | ||
Theorem | honegsubdi2 30182 | Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 −op 𝑈)) = (𝑈 −op 𝑇)) | ||
Theorem | hosubsub2 30183 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑆 −op (𝑇 −op 𝑈)) = (𝑆 +op (𝑈 −op 𝑇))) | ||
Theorem | hosub4 30184 | Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) −op (𝑇 +op 𝑈)) = ((𝑅 −op 𝑇) +op (𝑆 −op 𝑈))) | ||
Theorem | hosubadd4 30185 | Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 −op 𝑆) −op (𝑇 −op 𝑈)) = ((𝑅 +op 𝑈) −op (𝑆 +op 𝑇))) | ||
Theorem | hoaddsubass 30186 | Associative-type law for addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 +op 𝑇) −op 𝑈) = (𝑆 +op (𝑇 −op 𝑈))) | ||
Theorem | hoaddsub 30187 | Law for operator addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 +op 𝑇) −op 𝑈) = ((𝑆 −op 𝑈) +op 𝑇)) | ||
Theorem | hosubsub 30188 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑆 −op (𝑇 −op 𝑈)) = ((𝑆 −op 𝑇) +op 𝑈)) | ||
Theorem | hosubsub4 30189 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 −op 𝑇) −op 𝑈) = (𝑆 −op (𝑇 +op 𝑈))) | ||
Theorem | ho2times 30190 | Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) | ||
Theorem | hoaddsubassi 30191 | Associativity of sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) −op 𝑇) = (𝑅 +op (𝑆 −op 𝑇)) | ||
Theorem | hoaddsubi 30192 | Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) −op 𝑇) = ((𝑅 −op 𝑇) +op 𝑆) | ||
Theorem | hosd1i 30193 | Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 𝑈) = (𝑇 −op ( 0hop −op 𝑈)) | ||
Theorem | hosd2i 30194 | Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 𝑈) = (𝑇 −op ((𝑈 −op 𝑈) −op 𝑈)) | ||
Theorem | hopncani 30195 | Hilbert space operator cancellation law. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 +op 𝑈) −op 𝑈) = 𝑇 | ||
Theorem | honpcani 30196 | Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 −op 𝑈) +op 𝑈) = 𝑇 | ||
Theorem | hosubeq0i 30197 | If the difference between two operators is zero, they are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 −op 𝑈) = 0hop ↔ 𝑇 = 𝑈) | ||
Theorem | honpncani 30198 | Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 −op 𝑆) +op (𝑆 −op 𝑇)) = (𝑅 −op 𝑇) | ||
Theorem | ho01i 30199* | A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S8) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | ho02i 30200* | A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S10) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = 0 ↔ 𝑇 = 0hop ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |