| Metamath
Proof Explorer Theorem List (p. 302 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | clwwlknonex2e 30101 | Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) | ||
| Theorem | clwwlknondisj 30102* | The sets of closed walks on different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
| ⊢ Disj 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) | ||
| Theorem | clwwlknun 30103* | The set of closed walks of fixed length 𝑁 in a simple graph 𝐺 is the union of the closed walks of the fixed length 𝑁 on each of the vertices of graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) | ||
| Theorem | clwwlkvbij 30104* | There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 7-Jul-2022.) (Proof shortened by AV, 2-Nov-2022.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) | ||
| Theorem | 0ewlk 30105 | The empty set (empty sequence of edges) is an s-walk of edges for all s. (Contributed by AV, 4-Jan-2021.) |
| ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) | ||
| Theorem | 1ewlk 30106 | A sequence of 1 edge is an s-walk of edges for all s. (Contributed by AV, 5-Jan-2021.) |
| ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom (iEdg‘𝐺)) → 〈“𝐼”〉 ∈ (𝐺 EdgWalks 𝑆)) | ||
| Theorem | 0wlk 30107 | A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | is0wlk 30108 | A pair of an empty set (of edges) and a sequence of one vertex is a walk (of length 0). (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃 = {〈0, 𝑁〉} ∧ 𝑁 ∈ 𝑉) → ∅(Walks‘𝐺)𝑃) | ||
| Theorem | 0wlkonlem1 30109 | Lemma 1 for 0wlkon 30111 and 0trlon 30115. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) | ||
| Theorem | 0wlkonlem2 30110 | Lemma 2 for 0wlkon 30111 and 0trlon 30115. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) | ||
| Theorem | 0wlkon 30111 | A walk of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(WalksOn‘𝐺)𝑁)𝑃) | ||
| Theorem | 0wlkons1 30112 | A walk of length 0 from a vertex to itself. (Contributed by AV, 17-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(WalksOn‘𝐺)𝑁)〈“𝑁”〉) | ||
| Theorem | 0trl 30113 | A pair of an empty set (of edges) and a second set (of vertices) is a trail iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | is0trl 30114 | A pair of an empty set (of edges) and a sequence of one vertex is a trail (of length 0). (Contributed by AV, 7-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃 = {〈0, 𝑁〉} ∧ 𝑁 ∈ 𝑉) → ∅(Trails‘𝐺)𝑃) | ||
| Theorem | 0trlon 30115 | A trail of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 8-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃) | ||
| Theorem | 0pth 30116 | A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | 0spth 30117 | A pair of an empty set (of edges) and a second set (of vertices) is a simple path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 18-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (∅(SPaths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | 0pthon 30118 | A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 20-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) | ||
| Theorem | 0pthon1 30119 | A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 20-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉}) | ||
| Theorem | 0pthonv 30120* | For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 21-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) | ||
| Theorem | 0clwlk 30121 | A pair of an empty set (of edges) and a second set (of vertices) is a closed walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 17-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | ||
| Theorem | 0clwlkv 30122 | Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) | ||
| Theorem | 0clwlk0 30123 | There is no closed walk in the empty set (i.e. the null graph). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ (ClWalks‘∅) = ∅ | ||
| Theorem | 0crct 30124 | A pair of an empty set (of edges) and a second set (of vertices) is a circuit if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ (𝐺 ∈ 𝑊 → (∅(Circuits‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶(Vtx‘𝐺))) | ||
| Theorem | 0cycl 30125 | A pair of an empty set (of edges) and a second set (of vertices) is a cycle if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ (𝐺 ∈ 𝑊 → (∅(Cycles‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶(Vtx‘𝐺))) | ||
| Theorem | 1pthdlem1 30126 | Lemma 1 for 1pthd 30134. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 ⇒ ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) | ||
| Theorem | 1pthdlem2 30127 | Lemma 2 for 1pthd 30134. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 ⇒ ⊢ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ | ||
| Theorem | 1wlkdlem1 30128 | Lemma 1 for 1wlkd 30132. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||
| Theorem | 1wlkdlem2 30129 | Lemma 2 for 1wlkd 30132. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) | ||
| Theorem | 1wlkdlem3 30130 | Lemma 3 for 1wlkd 30132. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | ||
| Theorem | 1wlkdlem4 30131* | Lemma 4 for 1wlkd 30132. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | 1wlkd 30132 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | 1trld 30133 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | 1pthd 30134 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | 1pthond 30135 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | ||
| Theorem | upgr1wlkdlem1 30136 | Lemma 1 for upgr1wlkd 30138. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) ⇒ ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) | ||
| Theorem | upgr1wlkdlem2 30137 | Lemma 2 for upgr1wlkd 30138. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) | ||
| Theorem | upgr1wlkd 30138 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | upgr1trld 30139 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | upgr1pthd 30140 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | upgr1pthond 30141 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | ||
| Theorem | lppthon 30142 | A loop (which is an edge at index 𝐽) induces a path of length 1 from a vertex to itself in a hypergraph. (Contributed by AV, 1-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(𝐴(PathsOn‘𝐺)𝐴)〈“𝐴𝐴”〉) | ||
| Theorem | lp1cycl 30143 | A loop (which is an edge at index 𝐽) induces a cycle of length 1 in a hypergraph. (Contributed by AV, 2-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(Cycles‘𝐺)〈“𝐴𝐴”〉) | ||
| Theorem | 1pthon2v 30144* | For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | ||
| Theorem | 1pthon2ve 30145* | For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Proof shortened by AV, 15-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | ||
| Theorem | wlk2v2elem1 30146 | Lemma 1 for wlk2v2e 30148: 𝐹 is a length 2 word of over {0}, the domain of the singleton word 𝐼. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 ⇒ ⊢ 𝐹 ∈ Word dom 𝐼 | ||
| Theorem | wlk2v2elem2 30147* | Lemma 2 for wlk2v2e 30148: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 ⇒ ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} | ||
| Theorem | wlk2v2e 30148 | In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 & ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 ⇒ ⊢ 𝐹(Walks‘𝐺)𝑃 | ||
| Theorem | ntrl2v2e 30149 | A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e 30148, but not a trail. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 & ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 ⇒ ⊢ ¬ 𝐹(Trails‘𝐺)𝑃 | ||
| Theorem | 3wlkdlem1 30150 | Lemma 1 for 3wlkd 30161. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 ⇒ ⊢ (♯‘𝑃) = ((♯‘𝐹) + 1) | ||
| Theorem | 3wlkdlem2 30151 | Lemma 2 for 3wlkd 30161. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 ⇒ ⊢ (0..^(♯‘𝐹)) = {0, 1, 2} | ||
| Theorem | 3wlkdlem3 30152 | Lemma 3 for 3wlkd 30161. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) ⇒ ⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) | ||
| Theorem | 3wlkdlem4 30153* | Lemma 4 for 3wlkd 30161. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) | ||
| Theorem | 3wlkdlem5 30154* | Lemma 5 for 3wlkd 30161. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Theorem | 3pthdlem1 30155* | Lemma 1 for 3pthd 30165. (Contributed by AV, 9-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) | ||
| Theorem | 3wlkdlem6 30156 | Lemma 6 for 3wlkd 30161. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿))) | ||
| Theorem | 3wlkdlem7 30157 | Lemma 7 for 3wlkd 30161. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V)) | ||
| Theorem | 3wlkdlem8 30158 | Lemma 8 for 3wlkd 30161. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿)) | ||
| Theorem | 3wlkdlem9 30159 | Lemma 9 for 3wlkd 30161. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))) | ||
| Theorem | 3wlkdlem10 30160* | Lemma 10 for 3wlkd 30161. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | ||
| Theorem | 3wlkd 30161 | Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | 3wlkond 30162 | A walk of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3trld 30163 | Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | 3trlond 30164 | A trail of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3pthd 30165 | A path of length 3 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | 3pthond 30166 | A path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3spthd 30167 | A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | 3spthond 30168 | A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → 𝐹(𝐴(SPathsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3cycld 30169 | Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 = 𝐷) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | 3cyclpd 30170 | Construction of a 3-cycle from three given edges in a graph, containing an endpoint of one of these edges. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3 ∧ (𝑃‘0) = 𝐴)) | ||
| Theorem | upgr3v3e3cycl 30171* | If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))) | ||
| Theorem | uhgr3cyclexlem 30172 | Lemma for uhgr3cyclex 30173. (Contributed by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → 𝐽 ≠ 𝐾) | ||
| Theorem | uhgr3cyclex 30173* | If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)) | ||
| Theorem | umgr3cyclex 30174* | If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)) | ||
| Theorem | umgr3v3e3cycl 30175* | If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) | ||
| Theorem | upgr4cycl4dv4e 30176* | If there is a cycle of length 4 in a pseudograph, there are four (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 13-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ ({𝑐, 𝑑} ∈ 𝐸 ∧ {𝑑, 𝑎} ∈ 𝐸)) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) | ||
| Syntax | cconngr 30177 | Extend class notation with connected graphs. |
| class ConnGraph | ||
| Definition | df-conngr 30178* | Define the class of all connected graphs. A graph is called connected if there is a path between every pair of (distinct) vertices. The distinctness of the vertices is not necessary for the definition, because there is always a path (of length 0) from a vertex to itself, see 0pthonv 30120 and dfconngr1 30179. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ConnGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} | ||
| Theorem | dfconngr1 30179* | Alternative definition of the class of all connected graphs, requiring paths between distinct vertices. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ConnGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} | ||
| Theorem | isconngr 30180* | The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) | ||
| Theorem | isconngr1 30181* | The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) | ||
| Theorem | cusconngr 30182 | A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) | ||
| Theorem | 0conngr 30183 | A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ∅ ∈ ConnGraph | ||
| Theorem | 0vconngr 30184 | A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph) | ||
| Theorem | 1conngr 30185 | A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph) | ||
| Theorem | conngrv2edg 30186* | A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrv2 30286. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒) | ||
| Theorem | vdn0conngrumgrv2 30187 | A vertex in a connected multigraph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0) | ||
According to Wikipedia ("Eulerian path", 9-Mar-2021, https://en.wikipedia.org/wiki/Eulerian_path): "In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. ... The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. ... A graph that has an Eulerian trail but not an Eulerian circuit is called semi-Eulerian." Correspondingly, an Eulerian path is defined as "a trail containing all edges" (see definition in [Bollobas] p. 16) in df-eupth 30189 resp. iseupth 30192. (EulerPaths‘𝐺) is the set of all Eulerian paths in graph 𝐺, see eupths 30191. An Eulerian circuit (called Euler tour in the definition in [Diestel] p. 22) is "a circuit in a graph containing all the edges" (see definition in [Bollobas] p. 16), or, with other words, a circuit which is an Eulerian path. The function mapping a graph to the set of its Eulerian paths is defined as EulerPaths in df-eupth 30189, whereas there is no explicit definition for Eulerian circuits (yet): The statement "〈𝐹, 𝑃〉 is an Eulerian circuit" is formally expressed by (𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃). Each Eulerian path can be made an Eulerian circuit by adding an edge which connects the endpoints of the Eulerian path (see eupth2eucrct 30208). Vice versa, removing one edge from a graph with an Eulerian circuit results in a graph with an Eulerian path, see eucrct2eupth 30236. An Eulerian path does not have to be a path in the meaning of definition df-pths 29703, because it may traverse some vertices more than once. Therefore, "Eulerian trail" would be a more appropriate name. The main result of this section is (one direction of) Euler's Theorem: "A non-trivial connected graph has an Euler[ian] circuit iff each vertex has even degree." (see part 1 of theorem 12 in [Bollobas] p. 16 and theorem 1.8.1 in [Diestel] p. 22) or, expressed with Eulerian paths: "A connected graph has an Euler[ian] trail from a vertex x to a vertex y (not equal with x) iff x and y are the only vertices of odd degree." (see part 2 of theorem 12 in [Bollobas] p. 17). In eulerpath 30232, it is shown that a pseudograph with an Eulerian path has either zero or two vertices of odd degree, and eulercrct 30233 shows that a pseudograph with an Eulerian circuit has only vertices of even degree. | ||
| Syntax | ceupth 30188 | Extend class notation with Eulerian paths. |
| class EulerPaths | ||
| Definition | df-eupth 30189* | Define the set of all Eulerian paths on an arbitrary graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ EulerPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) | ||
| Theorem | releupth 30190 | The set (EulerPaths‘𝐺) of all Eulerian paths on 𝐺 is a set of pairs by our definition of an Eulerian path, and so is a relation. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ Rel (EulerPaths‘𝐺) | ||
| Theorem | eupths 30191* | The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} | ||
| Theorem | iseupth 30192 | The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) | ||
| Theorem | iseupthf1o 30193 | The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) | ||
| Theorem | eupthi 30194 | Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) | ||
| Theorem | eupthf1o 30195 | The 𝐹 function in an Eulerian path is a bijection from a half-open range of nonnegative integers to the set of edges. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) | ||
| Theorem | eupthfi 30196 | Any graph with an Eulerian path is of finite size, i.e. with a finite number of edges. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → dom 𝐼 ∈ Fin) | ||
| Theorem | eupthseg 30197 | The 𝑁-th edge in an eulerian path is the edge having 𝑃(𝑁) and 𝑃(𝑁 + 1) as endpoints . (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁))) | ||
| Theorem | upgriseupth 30198* | The property "〈𝐹, 𝑃〉 is an Eulerian path on the pseudograph 𝐺". (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upgreupthi 30199* | Properties of an Eulerian path in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) | ||
| Theorem | upgreupthseg 30200 | The 𝑁-th edge in an eulerian path is the edge from 𝑃(𝑁) to 𝑃(𝑁 + 1). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |