| Metamath
Proof Explorer Theorem List (p. 302 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 1wlkdlem3 30101 | Lemma 3 for 1wlkd 30103. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | ||
| Theorem | 1wlkdlem4 30102* | Lemma 4 for 1wlkd 30103. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | 1wlkd 30103 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | 1trld 30104 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | 1pthd 30105 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | 1pthond 30106 | In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) & ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | ||
| Theorem | upgr1wlkdlem1 30107 | Lemma 1 for upgr1wlkd 30109. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) ⇒ ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) | ||
| Theorem | upgr1wlkdlem2 30108 | Lemma 2 for upgr1wlkd 30109. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) | ||
| Theorem | upgr1wlkd 30109 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | upgr1trld 30110 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | upgr1pthd 30111 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | upgr1pthond 30112 | In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
| ⊢ 𝑃 = 〈“𝑋𝑌”〉 & ⊢ 𝐹 = 〈“𝐽”〉 & ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) & ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) ⇒ ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) | ||
| Theorem | lppthon 30113 | A loop (which is an edge at index 𝐽) induces a path of length 1 from a vertex to itself in a hypergraph. (Contributed by AV, 1-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(𝐴(PathsOn‘𝐺)𝐴)〈“𝐴𝐴”〉) | ||
| Theorem | lp1cycl 30114 | A loop (which is an edge at index 𝐽) induces a cycle of length 1 in a hypergraph. (Contributed by AV, 2-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(Cycles‘𝐺)〈“𝐴𝐴”〉) | ||
| Theorem | 1pthon2v 30115* | For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | ||
| Theorem | 1pthon2ve 30116* | For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Proof shortened by AV, 15-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | ||
| Theorem | wlk2v2elem1 30117 | Lemma 1 for wlk2v2e 30119: 𝐹 is a length 2 word of over {0}, the domain of the singleton word 𝐼. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 ⇒ ⊢ 𝐹 ∈ Word dom 𝐼 | ||
| Theorem | wlk2v2elem2 30118* | Lemma 2 for wlk2v2e 30119: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 ⇒ ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} | ||
| Theorem | wlk2v2e 30119 | In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 & ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 ⇒ ⊢ 𝐹(Walks‘𝐺)𝑃 | ||
| Theorem | ntrl2v2e 30120 | A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e 30119, but not a trail. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 & ⊢ 𝐹 = 〈“00”〉 & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 & ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 ⇒ ⊢ ¬ 𝐹(Trails‘𝐺)𝑃 | ||
| Theorem | 3wlkdlem1 30121 | Lemma 1 for 3wlkd 30132. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 ⇒ ⊢ (♯‘𝑃) = ((♯‘𝐹) + 1) | ||
| Theorem | 3wlkdlem2 30122 | Lemma 2 for 3wlkd 30132. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 ⇒ ⊢ (0..^(♯‘𝐹)) = {0, 1, 2} | ||
| Theorem | 3wlkdlem3 30123 | Lemma 3 for 3wlkd 30132. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) ⇒ ⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) | ||
| Theorem | 3wlkdlem4 30124* | Lemma 4 for 3wlkd 30132. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) | ||
| Theorem | 3wlkdlem5 30125* | Lemma 5 for 3wlkd 30132. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Theorem | 3pthdlem1 30126* | Lemma 1 for 3pthd 30136. (Contributed by AV, 9-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) | ||
| Theorem | 3wlkdlem6 30127 | Lemma 6 for 3wlkd 30132. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐿))) | ||
| Theorem | 3wlkdlem7 30128 | Lemma 7 for 3wlkd 30132. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V)) | ||
| Theorem | 3wlkdlem8 30129 | Lemma 8 for 3wlkd 30132. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿)) | ||
| Theorem | 3wlkdlem9 30130 | Lemma 9 for 3wlkd 30132. (Contributed by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))) | ||
| Theorem | 3wlkdlem10 30131* | Lemma 10 for 3wlkd 30132. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | ||
| Theorem | 3wlkd 30132 | Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | 3wlkond 30133 | A walk of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3trld 30134 | Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | 3trlond 30135 | A trail of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3pthd 30136 | A path of length 3 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | 3pthond 30137 | A path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) ⇒ ⊢ (𝜑 → 𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3spthd 30138 | A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | 3spthond 30139 | A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → 𝐹(𝐴(SPathsOn‘𝐺)𝐷)𝑃) | ||
| Theorem | 3cycld 30140 | Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 = 𝐷) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | 3cyclpd 30141 | Construction of a 3-cycle from three given edges in a graph, containing an endpoint of one of these edges. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 & ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 & ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) & ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) & ⊢ (𝜑 → 𝐴 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3 ∧ (𝑃‘0) = 𝐴)) | ||
| Theorem | upgr3v3e3cycl 30142* | If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))) | ||
| Theorem | uhgr3cyclexlem 30143 | Lemma for uhgr3cyclex 30144. (Contributed by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → 𝐽 ≠ 𝐾) | ||
| Theorem | uhgr3cyclex 30144* | If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)) | ||
| Theorem | umgr3cyclex 30145* | If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)) | ||
| Theorem | umgr3v3e3cycl 30146* | If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) | ||
| Theorem | upgr4cycl4dv4e 30147* | If there is a cycle of length 4 in a pseudograph, there are four (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 13-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ ({𝑐, 𝑑} ∈ 𝐸 ∧ {𝑑, 𝑎} ∈ 𝐸)) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) | ||
| Syntax | cconngr 30148 | Extend class notation with connected graphs. |
| class ConnGraph | ||
| Definition | df-conngr 30149* | Define the class of all connected graphs. A graph is called connected if there is a path between every pair of (distinct) vertices. The distinctness of the vertices is not necessary for the definition, because there is always a path (of length 0) from a vertex to itself, see 0pthonv 30091 and dfconngr1 30150. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ConnGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} | ||
| Theorem | dfconngr1 30150* | Alternative definition of the class of all connected graphs, requiring paths between distinct vertices. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ConnGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} | ||
| Theorem | isconngr 30151* | The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) | ||
| Theorem | isconngr1 30152* | The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) | ||
| Theorem | cusconngr 30153 | A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) | ||
| Theorem | 0conngr 30154 | A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ∅ ∈ ConnGraph | ||
| Theorem | 0vconngr 30155 | A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph) | ||
| Theorem | 1conngr 30156 | A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph) | ||
| Theorem | conngrv2edg 30157* | A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrv2 30257. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒) | ||
| Theorem | vdn0conngrumgrv2 30158 | A vertex in a connected multigraph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁 ∈ 𝑉 ∧ 1 < (♯‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0) | ||
According to Wikipedia ("Eulerian path", 9-Mar-2021, https://en.wikipedia.org/wiki/Eulerian_path): "In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. ... The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. ... A graph that has an Eulerian trail but not an Eulerian circuit is called semi-Eulerian." Correspondingly, an Eulerian path is defined as "a trail containing all edges" (see definition in [Bollobas] p. 16) in df-eupth 30160 resp. iseupth 30163. (EulerPaths‘𝐺) is the set of all Eulerian paths in graph 𝐺, see eupths 30162. An Eulerian circuit (called Euler tour in the definition in [Diestel] p. 22) is "a circuit in a graph containing all the edges" (see definition in [Bollobas] p. 16), or, with other words, a circuit which is an Eulerian path. The function mapping a graph to the set of its Eulerian paths is defined as EulerPaths in df-eupth 30160, whereas there is no explicit definition for Eulerian circuits (yet): The statement "〈𝐹, 𝑃〉 is an Eulerian circuit" is formally expressed by (𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃). Each Eulerian path can be made an Eulerian circuit by adding an edge which connects the endpoints of the Eulerian path (see eupth2eucrct 30179). Vice versa, removing one edge from a graph with an Eulerian circuit results in a graph with an Eulerian path, see eucrct2eupth 30207. An Eulerian path does not have to be a path in the meaning of definition df-pths 29677, because it may traverse some vertices more than once. Therefore, "Eulerian trail" would be a more appropriate name. The main result of this section is (one direction of) Euler's Theorem: "A non-trivial connected graph has an Euler[ian] circuit iff each vertex has even degree." (see part 1 of theorem 12 in [Bollobas] p. 16 and theorem 1.8.1 in [Diestel] p. 22) or, expressed with Eulerian paths: "A connected graph has an Euler[ian] trail from a vertex x to a vertex y (not equal with x) iff x and y are the only vertices of odd degree." (see part 2 of theorem 12 in [Bollobas] p. 17). In eulerpath 30203, it is shown that a pseudograph with an Eulerian path has either zero or two vertices of odd degree, and eulercrct 30204 shows that a pseudograph with an Eulerian circuit has only vertices of even degree. | ||
| Syntax | ceupth 30159 | Extend class notation with Eulerian paths. |
| class EulerPaths | ||
| Definition | df-eupth 30160* | Define the set of all Eulerian paths on an arbitrary graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ EulerPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) | ||
| Theorem | releupth 30161 | The set (EulerPaths‘𝐺) of all Eulerian paths on 𝐺 is a set of pairs by our definition of an Eulerian path, and so is a relation. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ Rel (EulerPaths‘𝐺) | ||
| Theorem | eupths 30162* | The Eulerian paths on the graph 𝐺. (Contributed by AV, 18-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (EulerPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom 𝐼)} | ||
| Theorem | iseupth 30163 | The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)) | ||
| Theorem | iseupthf1o 30164 | The property "〈𝐹, 𝑃〉 is an Eulerian path on the graph 𝐺". An Eulerian path is defined as bijection 𝐹 from the edges to a set 0...(𝑁 − 1) and a function 𝑃:(0...𝑁)⟶𝑉 into the vertices such that for each 0 ≤ 𝑘 < 𝑁, 𝐹(𝑘) is an edge from 𝑃(𝑘) to 𝑃(𝑘 + 1). (Since the edges are undirected and there are possibly many edges between any two given vertices, we need to list both the edges and the vertices of the path separately.) (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) | ||
| Theorem | eupthi 30165 | Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)) | ||
| Theorem | eupthf1o 30166 | The 𝐹 function in an Eulerian path is a bijection from a half-open range of nonnegative integers to the set of edges. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) | ||
| Theorem | eupthfi 30167 | Any graph with an Eulerian path is of finite size, i.e. with a finite number of edges. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → dom 𝐼 ∈ Fin) | ||
| Theorem | eupthseg 30168 | The 𝑁-th edge in an eulerian path is the edge having 𝑃(𝑁) and 𝑃(𝑁 + 1) as endpoints . (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁))) | ||
| Theorem | upgriseupth 30169* | The property "〈𝐹, 𝑃〉 is an Eulerian path on the pseudograph 𝐺". (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upgreupthi 30170* | Properties of an Eulerian path in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) | ||
| Theorem | upgreupthseg 30171 | The 𝑁-th edge in an eulerian path is the edge from 𝑃(𝑁) to 𝑃(𝑁 + 1). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) | ||
| Theorem | eupthcl 30172 | An Eulerian path has length ♯(𝐹), which is an integer. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | ||
| Theorem | eupthistrl 30173 | An Eulerian path is a trail. (Contributed by Alexander van der Vekens, 24-Nov-2017.) (Revised by AV, 18-Feb-2021.) |
| ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | eupthiswlk 30174 | An Eulerian path is a walk. (Contributed by AV, 6-Apr-2021.) |
| ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | eupthpf 30175 | The 𝑃 function in an Eulerian path is a function from a finite sequence of nonnegative integers to the vertices. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) | ||
| Theorem | eupth0 30176 | There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 5-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 = ∅) → ∅(EulerPaths‘𝐺){〈0, 𝐴〉}) | ||
| Theorem | eupthres 30177 | The restriction 〈𝐻, 𝑄〉 of an Eulerian path 〈𝐹, 𝑃〉 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) & ⊢ (Vtx‘𝑆) = 𝑉 ⇒ ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) | ||
| Theorem | eupthp1 30178 | Append one path segment to an Eulerian path 〈𝐹, 𝑃〉 to become an Eulerian path 〈𝐻, 𝑄〉 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 7-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉}) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (Vtx‘𝑆) = 𝑉 & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) ⇒ ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) | ||
| Theorem | eupth2eucrct 30179 | Append one path segment to an Eulerian path 〈𝐹, 𝑃〉 which may not be an (Eulerian) circuit to become an Eulerian circuit 〈𝐻, 𝑄〉 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by AV, 11-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉}) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (Vtx‘𝑆) = 𝑉 & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) & ⊢ (𝜑 → 𝐶 = (𝑃‘0)) ⇒ ⊢ (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ∧ 𝐻(Circuits‘𝑆)𝑄)) | ||
| Theorem | eupth2lem1 30180 | Lemma for eupth2 30201. (Contributed by Mario Carneiro, 8-Apr-2015.) |
| ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴 ≠ 𝐵 ∧ (𝑈 = 𝐴 ∨ 𝑈 = 𝐵)))) | ||
| Theorem | eupth2lem2 30181 | Lemma for eupth2 30201. (Contributed by Mario Carneiro, 8-Apr-2015.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (¬ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ 𝑈 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}))) | ||
| Theorem | trlsegvdeglem1 30182 | Lemma for trlsegvdeg 30189. (Contributed by AV, 20-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) ⇒ ⊢ (𝜑 → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) | ||
| Theorem | trlsegvdeglem2 30183 | Lemma for trlsegvdeg 30189. (Contributed by AV, 20-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → Fun (iEdg‘𝑋)) | ||
| Theorem | trlsegvdeglem3 30184 | Lemma for trlsegvdeg 30189. (Contributed by AV, 20-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → Fun (iEdg‘𝑌)) | ||
| Theorem | trlsegvdeglem4 30185 | Lemma for trlsegvdeg 30189. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) | ||
| Theorem | trlsegvdeglem5 30186 | Lemma for trlsegvdeg 30189. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) | ||
| Theorem | trlsegvdeglem6 30187 | Lemma for trlsegvdeg 30189. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) | ||
| Theorem | trlsegvdeglem7 30188 | Lemma for trlsegvdeg 30189. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) | ||
| Theorem | trlsegvdeg 30189 | Formerly part of proof of eupth2lem3 30198: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk except the last one, and a subgraph 𝑌 with the vertices 𝑉 of 𝐺 and one edges being the last edge of the walk, then the vertex degree of any vertex 𝑈 of 𝐺 within 𝑍 is the sum of the vertex degree of 𝑈 within 𝑋 and the vertex degree of 𝑈 within 𝑌. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) | ||
| Theorem | eupth2lem3lem1 30190 | Lemma for eupth2lem3 30198. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0) | ||
| Theorem | eupth2lem3lem2 30191 | Lemma for eupth2lem3 30198. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0) | ||
| Theorem | eupth2lem3lem3 30192* | Lemma for eupth2lem3 30198, formerly part of proof of eupth2lem3 30198: If a loop {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) ⇒ ⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lem3lem4 30193* | Lemma for eupth2lem3 30198, formerly part of proof of eupth2lem3 30198: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) ∈ 𝒫 𝑉) ⇒ ⊢ ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lem3lem5 30194* | Lemma for eupth2 30201. (Contributed by AV, 25-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) ⇒ ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) ∈ 𝒫 𝑉) | ||
| Theorem | eupth2lem3lem6 30195* | Formerly part of proof of eupth2lem3 30198: If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than (𝑃‘0) and (𝑃‘𝑁): if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) ⇒ ⊢ ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃‘𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lem3lem7 30196* | Lemma for eupth2lem3 30198: Combining trlsegvdeg 30189, eupth2lem3lem3 30192, eupth2lem3lem4 30193 and eupth2lem3lem6 30195. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 27-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) ⇒ ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupthvdres 30197 | Formerly part of proof of eupth2 30201: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ⇒ ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) | ||
| Theorem | eupth2lem3 30198* | Lemma for eupth2 30201. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 & ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) ⇒ ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lemb 30199* | Lemma for eupth2 30201 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 30201. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)} = ∅) | ||
| Theorem | eupth2lems 30200* | Lemma for eupth2 30201 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 30201. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |