MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smfval Structured version   Visualization version   GIF version

Theorem smfval 30580
Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
smfval.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
smfval 𝑆 = (2nd ‘(1st𝑈))

Proof of Theorem smfval
StepHypRef Expression
1 smfval.4 . 2 𝑆 = ( ·𝑠OLD𝑈)
2 df-sm 30572 . . . . 5 ·𝑠OLD = (2nd ∘ 1st )
32fveq1i 6823 . . . 4 ( ·𝑠OLD𝑈) = ((2nd ∘ 1st )‘𝑈)
4 fo1st 7941 . . . . . 6 1st :V–onto→V
5 fof 6735 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6921 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
86, 7mpan 690 . . . 4 (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
93, 8eqtrid 2778 . . 3 (𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
10 fvprc 6814 . . . 4 𝑈 ∈ V → ( ·𝑠OLD𝑈) = ∅)
11 fvprc 6814 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6826 . . . . 5 𝑈 ∈ V → (2nd ‘(1st𝑈)) = (2nd ‘∅))
13 2nd0 7928 . . . . 5 (2nd ‘∅) = ∅
1412, 13eqtr2di 2783 . . . 4 𝑈 ∈ V → ∅ = (2nd ‘(1st𝑈)))
1510, 14eqtrd 2766 . . 3 𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
169, 15pm2.61i 182 . 2 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
171, 16eqtri 2754 1 𝑆 = (2nd ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  ccom 5620  wf 6477  ontowfo 6479  cfv 6481  1st c1st 7919  2nd c2nd 7920   ·𝑠OLD cns 30562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-sm 30572
This theorem is referenced by:  nvvop  30584  nvsf  30594  nvscl  30601  nvsid  30602  nvsass  30603  nvdi  30605  nvdir  30606  nv2  30607  nv0  30612  nvsz  30613  nvinv  30614  nvtri  30645  cnnvs  30655  phop  30793  ipdirilem  30804  h2hsm  30950  hhsssm  31233
  Copyright terms: Public domain W3C validator