MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smfval Structured version   Visualization version   GIF version

Theorem smfval 28388
Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
smfval.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
smfval 𝑆 = (2nd ‘(1st𝑈))

Proof of Theorem smfval
StepHypRef Expression
1 smfval.4 . 2 𝑆 = ( ·𝑠OLD𝑈)
2 df-sm 28380 . . . . 5 ·𝑠OLD = (2nd ∘ 1st )
32fveq1i 6646 . . . 4 ( ·𝑠OLD𝑈) = ((2nd ∘ 1st )‘𝑈)
4 fo1st 7691 . . . . . 6 1st :V–onto→V
5 fof 6565 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6737 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
86, 7mpan 689 . . . 4 (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
93, 8syl5eq 2845 . . 3 (𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
10 fvprc 6638 . . . 4 𝑈 ∈ V → ( ·𝑠OLD𝑈) = ∅)
11 fvprc 6638 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6649 . . . . 5 𝑈 ∈ V → (2nd ‘(1st𝑈)) = (2nd ‘∅))
13 2nd0 7678 . . . . 5 (2nd ‘∅) = ∅
1412, 13eqtr2di 2850 . . . 4 𝑈 ∈ V → ∅ = (2nd ‘(1st𝑈)))
1510, 14eqtrd 2833 . . 3 𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
169, 15pm2.61i 185 . 2 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
171, 16eqtri 2821 1 𝑆 = (2nd ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  ccom 5523  wf 6320  ontowfo 6322  cfv 6324  1st c1st 7669  2nd c2nd 7670   ·𝑠OLD cns 28370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-1st 7671  df-2nd 7672  df-sm 28380
This theorem is referenced by:  nvvop  28392  nvsf  28402  nvscl  28409  nvsid  28410  nvsass  28411  nvdi  28413  nvdir  28414  nv2  28415  nv0  28420  nvsz  28421  nvinv  28422  nvtri  28453  cnnvs  28463  phop  28601  ipdirilem  28612  h2hsm  28758  hhsssm  29041
  Copyright terms: Public domain W3C validator