| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| smfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| Ref | Expression |
|---|---|
| smfval | ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfval.4 | . 2 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 2 | df-sm 30532 | . . . . 5 ⊢ ·𝑠OLD = (2nd ∘ 1st ) | |
| 3 | 2 | fveq1i 6861 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ((2nd ∘ 1st )‘𝑈) |
| 4 | fo1st 7990 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6774 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fvco3 6962 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) | |
| 8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) |
| 9 | 3, 8 | eqtrid 2777 | . . 3 ⊢ (𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
| 10 | fvprc 6852 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = ∅) | |
| 11 | fvprc 6852 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
| 12 | 11 | fveq2d 6864 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (2nd ‘(1st ‘𝑈)) = (2nd ‘∅)) |
| 13 | 2nd0 7977 | . . . . 5 ⊢ (2nd ‘∅) = ∅ | |
| 14 | 12, 13 | eqtr2di 2782 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (2nd ‘(1st ‘𝑈))) |
| 15 | 10, 14 | eqtrd 2765 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
| 16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈)) |
| 17 | 1, 16 | eqtri 2753 | 1 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4298 ∘ ccom 5644 ⟶wf 6509 –onto→wfo 6511 ‘cfv 6513 1st c1st 7968 2nd c2nd 7969 ·𝑠OLD cns 30522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-1st 7970 df-2nd 7971 df-sm 30532 |
| This theorem is referenced by: nvvop 30544 nvsf 30554 nvscl 30561 nvsid 30562 nvsass 30563 nvdi 30565 nvdir 30566 nv2 30567 nv0 30572 nvsz 30573 nvinv 30574 nvtri 30605 cnnvs 30615 phop 30753 ipdirilem 30764 h2hsm 30910 hhsssm 31193 |
| Copyright terms: Public domain | W3C validator |