MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smfval Structured version   Visualization version   GIF version

Theorem smfval 30586
Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
smfval.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
smfval 𝑆 = (2nd ‘(1st𝑈))

Proof of Theorem smfval
StepHypRef Expression
1 smfval.4 . 2 𝑆 = ( ·𝑠OLD𝑈)
2 df-sm 30578 . . . . 5 ·𝑠OLD = (2nd ∘ 1st )
32fveq1i 6877 . . . 4 ( ·𝑠OLD𝑈) = ((2nd ∘ 1st )‘𝑈)
4 fo1st 8008 . . . . . 6 1st :V–onto→V
5 fof 6790 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6978 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
86, 7mpan 690 . . . 4 (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
93, 8eqtrid 2782 . . 3 (𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
10 fvprc 6868 . . . 4 𝑈 ∈ V → ( ·𝑠OLD𝑈) = ∅)
11 fvprc 6868 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6880 . . . . 5 𝑈 ∈ V → (2nd ‘(1st𝑈)) = (2nd ‘∅))
13 2nd0 7995 . . . . 5 (2nd ‘∅) = ∅
1412, 13eqtr2di 2787 . . . 4 𝑈 ∈ V → ∅ = (2nd ‘(1st𝑈)))
1510, 14eqtrd 2770 . . 3 𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
169, 15pm2.61i 182 . 2 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
171, 16eqtri 2758 1 𝑆 = (2nd ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  ccom 5658  wf 6527  ontowfo 6529  cfv 6531  1st c1st 7986  2nd c2nd 7987   ·𝑠OLD cns 30568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1st 7988  df-2nd 7989  df-sm 30578
This theorem is referenced by:  nvvop  30590  nvsf  30600  nvscl  30607  nvsid  30608  nvsass  30609  nvdi  30611  nvdir  30612  nv2  30613  nv0  30618  nvsz  30619  nvinv  30620  nvtri  30651  cnnvs  30661  phop  30799  ipdirilem  30810  h2hsm  30956  hhsssm  31239
  Copyright terms: Public domain W3C validator