![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smfval | Structured version Visualization version GIF version |
Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
smfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
smfval | ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfval.4 | . 2 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
2 | df-sm 29828 | . . . . 5 ⊢ ·𝑠OLD = (2nd ∘ 1st ) | |
3 | 2 | fveq1i 6889 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ((2nd ∘ 1st )‘𝑈) |
4 | fo1st 7990 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6802 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fvco3 6986 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) | |
8 | 6, 7 | mpan 689 | . . . 4 ⊢ (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) |
9 | 3, 8 | eqtrid 2785 | . . 3 ⊢ (𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
10 | fvprc 6880 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = ∅) | |
11 | fvprc 6880 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
12 | 11 | fveq2d 6892 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (2nd ‘(1st ‘𝑈)) = (2nd ‘∅)) |
13 | 2nd0 7977 | . . . . 5 ⊢ (2nd ‘∅) = ∅ | |
14 | 12, 13 | eqtr2di 2790 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (2nd ‘(1st ‘𝑈))) |
15 | 10, 14 | eqtrd 2773 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈)) |
17 | 1, 16 | eqtri 2761 | 1 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4321 ∘ ccom 5679 ⟶wf 6536 –onto→wfo 6538 ‘cfv 6540 1st c1st 7968 2nd c2nd 7969 ·𝑠OLD cns 29818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-1st 7970 df-2nd 7971 df-sm 29828 |
This theorem is referenced by: nvvop 29840 nvsf 29850 nvscl 29857 nvsid 29858 nvsass 29859 nvdi 29861 nvdir 29862 nv2 29863 nv0 29868 nvsz 29869 nvinv 29870 nvtri 29901 cnnvs 29911 phop 30049 ipdirilem 30060 h2hsm 30206 hhsssm 30489 |
Copyright terms: Public domain | W3C validator |