| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| smfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| Ref | Expression |
|---|---|
| smfval | ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfval.4 | . 2 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 2 | df-sm 30526 | . . . . 5 ⊢ ·𝑠OLD = (2nd ∘ 1st ) | |
| 3 | 2 | fveq1i 6859 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ((2nd ∘ 1st )‘𝑈) |
| 4 | fo1st 7988 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6772 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fvco3 6960 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) | |
| 8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) |
| 9 | 3, 8 | eqtrid 2776 | . . 3 ⊢ (𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
| 10 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = ∅) | |
| 11 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
| 12 | 11 | fveq2d 6862 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (2nd ‘(1st ‘𝑈)) = (2nd ‘∅)) |
| 13 | 2nd0 7975 | . . . . 5 ⊢ (2nd ‘∅) = ∅ | |
| 14 | 12, 13 | eqtr2di 2781 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (2nd ‘(1st ‘𝑈))) |
| 15 | 10, 14 | eqtrd 2764 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
| 16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈)) |
| 17 | 1, 16 | eqtri 2752 | 1 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ∘ ccom 5642 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 ·𝑠OLD cns 30516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-sm 30526 |
| This theorem is referenced by: nvvop 30538 nvsf 30548 nvscl 30555 nvsid 30556 nvsass 30557 nvdi 30559 nvdir 30560 nv2 30561 nv0 30566 nvsz 30567 nvinv 30568 nvtri 30599 cnnvs 30609 phop 30747 ipdirilem 30758 h2hsm 30904 hhsssm 31187 |
| Copyright terms: Public domain | W3C validator |