MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smfval Structured version   Visualization version   GIF version

Theorem smfval 30534
Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
smfval.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
smfval 𝑆 = (2nd ‘(1st𝑈))

Proof of Theorem smfval
StepHypRef Expression
1 smfval.4 . 2 𝑆 = ( ·𝑠OLD𝑈)
2 df-sm 30526 . . . . 5 ·𝑠OLD = (2nd ∘ 1st )
32fveq1i 6859 . . . 4 ( ·𝑠OLD𝑈) = ((2nd ∘ 1st )‘𝑈)
4 fo1st 7988 . . . . . 6 1st :V–onto→V
5 fof 6772 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6960 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
86, 7mpan 690 . . . 4 (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
93, 8eqtrid 2776 . . 3 (𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
10 fvprc 6850 . . . 4 𝑈 ∈ V → ( ·𝑠OLD𝑈) = ∅)
11 fvprc 6850 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6862 . . . . 5 𝑈 ∈ V → (2nd ‘(1st𝑈)) = (2nd ‘∅))
13 2nd0 7975 . . . . 5 (2nd ‘∅) = ∅
1412, 13eqtr2di 2781 . . . 4 𝑈 ∈ V → ∅ = (2nd ‘(1st𝑈)))
1510, 14eqtrd 2764 . . 3 𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
169, 15pm2.61i 182 . 2 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
171, 16eqtri 2752 1 𝑆 = (2nd ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  ccom 5642  wf 6507  ontowfo 6509  cfv 6511  1st c1st 7966  2nd c2nd 7967   ·𝑠OLD cns 30516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-sm 30526
This theorem is referenced by:  nvvop  30538  nvsf  30548  nvscl  30555  nvsid  30556  nvsass  30557  nvdi  30559  nvdir  30560  nv2  30561  nv0  30566  nvsz  30567  nvinv  30568  nvtri  30599  cnnvs  30609  phop  30747  ipdirilem  30758  h2hsm  30904  hhsssm  31187
  Copyright terms: Public domain W3C validator