![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smfval | Structured version Visualization version GIF version |
Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
smfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
smfval | ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfval.4 | . 2 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
2 | df-sm 30629 | . . . . 5 ⊢ ·𝑠OLD = (2nd ∘ 1st ) | |
3 | 2 | fveq1i 6921 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ((2nd ∘ 1st )‘𝑈) |
4 | fo1st 8050 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6834 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fvco3 7021 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) | |
8 | 6, 7 | mpan 689 | . . . 4 ⊢ (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st ‘𝑈))) |
9 | 3, 8 | eqtrid 2792 | . . 3 ⊢ (𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
10 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = ∅) | |
11 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
12 | 11 | fveq2d 6924 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (2nd ‘(1st ‘𝑈)) = (2nd ‘∅)) |
13 | 2nd0 8037 | . . . . 5 ⊢ (2nd ‘∅) = ∅ | |
14 | 12, 13 | eqtr2di 2797 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (2nd ‘(1st ‘𝑈))) |
15 | 10, 14 | eqtrd 2780 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈))) |
16 | 9, 15 | pm2.61i 182 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = (2nd ‘(1st ‘𝑈)) |
17 | 1, 16 | eqtri 2768 | 1 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ∘ ccom 5704 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 ·𝑠OLD cns 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-sm 30629 |
This theorem is referenced by: nvvop 30641 nvsf 30651 nvscl 30658 nvsid 30659 nvsass 30660 nvdi 30662 nvdir 30663 nv2 30664 nv0 30669 nvsz 30670 nvinv 30671 nvtri 30702 cnnvs 30712 phop 30850 ipdirilem 30861 h2hsm 31007 hhsssm 31290 |
Copyright terms: Public domain | W3C validator |