MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smfval Structured version   Visualization version   GIF version

Theorem smfval 28868
Description: Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
smfval.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
smfval 𝑆 = (2nd ‘(1st𝑈))

Proof of Theorem smfval
StepHypRef Expression
1 smfval.4 . 2 𝑆 = ( ·𝑠OLD𝑈)
2 df-sm 28860 . . . . 5 ·𝑠OLD = (2nd ∘ 1st )
32fveq1i 6757 . . . 4 ( ·𝑠OLD𝑈) = ((2nd ∘ 1st )‘𝑈)
4 fo1st 7824 . . . . . 6 1st :V–onto→V
5 fof 6672 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fvco3 6849 . . . . 5 ((1st :V⟶V ∧ 𝑈 ∈ V) → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
86, 7mpan 686 . . . 4 (𝑈 ∈ V → ((2nd ∘ 1st )‘𝑈) = (2nd ‘(1st𝑈)))
93, 8syl5eq 2791 . . 3 (𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
10 fvprc 6748 . . . 4 𝑈 ∈ V → ( ·𝑠OLD𝑈) = ∅)
11 fvprc 6748 . . . . . 6 𝑈 ∈ V → (1st𝑈) = ∅)
1211fveq2d 6760 . . . . 5 𝑈 ∈ V → (2nd ‘(1st𝑈)) = (2nd ‘∅))
13 2nd0 7811 . . . . 5 (2nd ‘∅) = ∅
1412, 13eqtr2di 2796 . . . 4 𝑈 ∈ V → ∅ = (2nd ‘(1st𝑈)))
1510, 14eqtrd 2778 . . 3 𝑈 ∈ V → ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈)))
169, 15pm2.61i 182 . 2 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
171, 16eqtri 2766 1 𝑆 = (2nd ‘(1st𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  ccom 5584  wf 6414  ontowfo 6416  cfv 6418  1st c1st 7802  2nd c2nd 7803   ·𝑠OLD cns 28850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-sm 28860
This theorem is referenced by:  nvvop  28872  nvsf  28882  nvscl  28889  nvsid  28890  nvsass  28891  nvdi  28893  nvdir  28894  nv2  28895  nv0  28900  nvsz  28901  nvinv  28902  nvtri  28933  cnnvs  28943  phop  29081  ipdirilem  29092  h2hsm  29238  hhsssm  29521
  Copyright terms: Public domain W3C validator