Detailed syntax breakdown of Definition df-smat
Step | Hyp | Ref
| Expression |
1 | | csmat 31651 |
. 2
class
subMat1 |
2 | | vm |
. . 3
setvar 𝑚 |
3 | | cvv 3423 |
. . 3
class
V |
4 | | vk |
. . . 4
setvar 𝑘 |
5 | | vl |
. . . 4
setvar 𝑙 |
6 | | cn 11908 |
. . . 4
class
ℕ |
7 | 2 | cv 1538 |
. . . . 5
class 𝑚 |
8 | | vi |
. . . . . 6
setvar 𝑖 |
9 | | vj |
. . . . . 6
setvar 𝑗 |
10 | 8 | cv 1538 |
. . . . . . . . 9
class 𝑖 |
11 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑘 |
12 | | clt 10945 |
. . . . . . . . 9
class
< |
13 | 10, 11, 12 | wbr 5071 |
. . . . . . . 8
wff 𝑖 < 𝑘 |
14 | | c1 10808 |
. . . . . . . . 9
class
1 |
15 | | caddc 10810 |
. . . . . . . . 9
class
+ |
16 | 10, 14, 15 | co 7256 |
. . . . . . . 8
class (𝑖 + 1) |
17 | 13, 10, 16 | cif 4457 |
. . . . . . 7
class if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)) |
18 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑗 |
19 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑙 |
20 | 18, 19, 12 | wbr 5071 |
. . . . . . . 8
wff 𝑗 < 𝑙 |
21 | 18, 14, 15 | co 7256 |
. . . . . . . 8
class (𝑗 + 1) |
22 | 20, 18, 21 | cif 4457 |
. . . . . . 7
class if(𝑗 < 𝑙, 𝑗, (𝑗 + 1)) |
23 | 17, 22 | cop 4565 |
. . . . . 6
class
〈if(𝑖 <
𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉 |
24 | 8, 9, 6, 6, 23 | cmpo 7258 |
. . . . 5
class (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉) |
25 | 7, 24 | ccom 5585 |
. . . 4
class (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)) |
26 | 4, 5, 6, 6, 25 | cmpo 7258 |
. . 3
class (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉))) |
27 | 2, 3, 26 | cmpt 5154 |
. 2
class (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
28 | 1, 27 | wceq 1539 |
1
wff subMat1 =
(𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |