Detailed syntax breakdown of Definition df-smat
| Step | Hyp | Ref
| Expression |
| 1 | | csmat 33792 |
. 2
class
subMat1 |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vk |
. . . 4
setvar 𝑘 |
| 5 | | vl |
. . . 4
setvar 𝑙 |
| 6 | | cn 12266 |
. . . 4
class
ℕ |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑚 |
| 8 | | vi |
. . . . . 6
setvar 𝑖 |
| 9 | | vj |
. . . . . 6
setvar 𝑗 |
| 10 | 8 | cv 1539 |
. . . . . . . . 9
class 𝑖 |
| 11 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑘 |
| 12 | | clt 11295 |
. . . . . . . . 9
class
< |
| 13 | 10, 11, 12 | wbr 5143 |
. . . . . . . 8
wff 𝑖 < 𝑘 |
| 14 | | c1 11156 |
. . . . . . . . 9
class
1 |
| 15 | | caddc 11158 |
. . . . . . . . 9
class
+ |
| 16 | 10, 14, 15 | co 7431 |
. . . . . . . 8
class (𝑖 + 1) |
| 17 | 13, 10, 16 | cif 4525 |
. . . . . . 7
class if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)) |
| 18 | 9 | cv 1539 |
. . . . . . . . 9
class 𝑗 |
| 19 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑙 |
| 20 | 18, 19, 12 | wbr 5143 |
. . . . . . . 8
wff 𝑗 < 𝑙 |
| 21 | 18, 14, 15 | co 7431 |
. . . . . . . 8
class (𝑗 + 1) |
| 22 | 20, 18, 21 | cif 4525 |
. . . . . . 7
class if(𝑗 < 𝑙, 𝑗, (𝑗 + 1)) |
| 23 | 17, 22 | cop 4632 |
. . . . . 6
class
〈if(𝑖 <
𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉 |
| 24 | 8, 9, 6, 6, 23 | cmpo 7433 |
. . . . 5
class (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉) |
| 25 | 7, 24 | ccom 5689 |
. . . 4
class (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)) |
| 26 | 4, 5, 6, 6, 25 | cmpo 7433 |
. . 3
class (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉))) |
| 27 | 2, 3, 26 | cmpt 5225 |
. 2
class (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
| 28 | 1, 27 | wceq 1540 |
1
wff subMat1 =
(𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |