Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatfval Structured version   Visualization version   GIF version

Theorem smatfval 31413
Description: Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Assertion
Ref Expression
smatfval ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
Distinct variable groups:   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝑀(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem smatfval
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3416 . . . 4 (𝑀𝑉𝑀 ∈ V)
213ad2ant3 1137 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝑀 ∈ V)
3 coeq1 5711 . . . . 5 (𝑚 = 𝑀 → (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)))
43mpoeq3dv 7268 . . . 4 (𝑚 = 𝑀 → (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
5 df-smat 31412 . . . 4 subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
6 nnex 11801 . . . . 5 ℕ ∈ V
76, 6mpoex 7828 . . . 4 (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))) ∈ V
84, 5, 7fvmpt 6796 . . 3 (𝑀 ∈ V → (subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
92, 8syl 17 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
10 breq2 5043 . . . . . . . 8 (𝑘 = 𝐾 → (𝑖 < 𝑘𝑖 < 𝐾))
1110ifbid 4448 . . . . . . 7 (𝑘 = 𝐾 → if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)))
1211opeq1d 4776 . . . . . 6 (𝑘 = 𝐾 → ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)
1312mpoeq3dv 7268 . . . . 5 (𝑘 = 𝐾 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))
14 breq2 5043 . . . . . . . 8 (𝑙 = 𝐿 → (𝑗 < 𝑙𝑗 < 𝐿))
1514ifbid 4448 . . . . . . 7 (𝑙 = 𝐿 → if(𝑗 < 𝑙, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)))
1615opeq2d 4777 . . . . . 6 (𝑙 = 𝐿 → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
1716mpoeq3dv 7268 . . . . 5 (𝑙 = 𝐿 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
1813, 17sylan9eq 2791 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
1918adantl 485 . . 3 (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
2019coeq2d 5716 . 2 (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
21 simp1 1138 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝐾 ∈ ℕ)
22 simp2 1139 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝐿 ∈ ℕ)
23 simp3 1140 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝑀𝑉)
246, 6mpoex 7828 . . . 4 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V
2524a1i 11 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V)
26 coexg 7685 . . 3 ((𝑀𝑉 ∧ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ∈ V)
2723, 25, 26syl2anc 587 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ∈ V)
289, 20, 21, 22, 27ovmpod 7339 1 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398  ifcif 4425  cop 4533   class class class wbr 5039  ccom 5540  cfv 6358  (class class class)co 7191  cmpo 7193  1c1 10695   + caddc 10697   < clt 10832  cn 11795  subMat1csmat 31411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-1cn 10752  ax-addcl 10754
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-nn 11796  df-smat 31412
This theorem is referenced by:  smatrcl  31414  smatlem  31415
  Copyright terms: Public domain W3C validator