Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatfval Structured version   Visualization version   GIF version

Theorem smatfval 31152
Description: Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Assertion
Ref Expression
smatfval ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
Distinct variable groups:   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝑀(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem smatfval
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3462 . . . 4 (𝑀𝑉𝑀 ∈ V)
213ad2ant3 1132 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝑀 ∈ V)
3 coeq1 5696 . . . . 5 (𝑚 = 𝑀 → (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)))
43mpoeq3dv 7216 . . . 4 (𝑚 = 𝑀 → (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
5 df-smat 31151 . . . 4 subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
6 nnex 11635 . . . . 5 ℕ ∈ V
76, 6mpoex 7764 . . . 4 (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))) ∈ V
84, 5, 7fvmpt 6749 . . 3 (𝑀 ∈ V → (subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
92, 8syl 17 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
10 breq2 5037 . . . . . . . 8 (𝑘 = 𝐾 → (𝑖 < 𝑘𝑖 < 𝐾))
1110ifbid 4450 . . . . . . 7 (𝑘 = 𝐾 → if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)))
1211opeq1d 4774 . . . . . 6 (𝑘 = 𝐾 → ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)
1312mpoeq3dv 7216 . . . . 5 (𝑘 = 𝐾 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))
14 breq2 5037 . . . . . . . 8 (𝑙 = 𝐿 → (𝑗 < 𝑙𝑗 < 𝐿))
1514ifbid 4450 . . . . . . 7 (𝑙 = 𝐿 → if(𝑗 < 𝑙, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)))
1615opeq2d 4775 . . . . . 6 (𝑙 = 𝐿 → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
1716mpoeq3dv 7216 . . . . 5 (𝑙 = 𝐿 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
1813, 17sylan9eq 2856 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
1918adantl 485 . . 3 (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
2019coeq2d 5701 . 2 (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
21 simp1 1133 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝐾 ∈ ℕ)
22 simp2 1134 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝐿 ∈ ℕ)
23 simp3 1135 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝑀𝑉)
246, 6mpoex 7764 . . . 4 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V
2524a1i 11 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V)
26 coexg 7620 . . 3 ((𝑀𝑉 ∧ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ∈ V)
2723, 25, 26syl2anc 587 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ∈ V)
289, 20, 21, 22, 27ovmpod 7285 1 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  Vcvv 3444  ifcif 4428  cop 4534   class class class wbr 5033  ccom 5527  cfv 6328  (class class class)co 7139  cmpo 7141  1c1 10531   + caddc 10533   < clt 10668  cn 11629  subMat1csmat 31150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-nn 11630  df-smat 31151
This theorem is referenced by:  smatrcl  31153  smatlem  31154
  Copyright terms: Public domain W3C validator