Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatfval Structured version   Visualization version   GIF version

Theorem smatfval 31745
Description: Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Assertion
Ref Expression
smatfval ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
Distinct variable groups:   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝑀(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem smatfval
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . . . 4 (𝑀𝑉𝑀 ∈ V)
213ad2ant3 1134 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝑀 ∈ V)
3 coeq1 5766 . . . . 5 (𝑚 = 𝑀 → (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)))
43mpoeq3dv 7354 . . . 4 (𝑚 = 𝑀 → (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
5 df-smat 31744 . . . 4 subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
6 nnex 11979 . . . . 5 ℕ ∈ V
76, 6mpoex 7920 . . . 4 (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))) ∈ V
84, 5, 7fvmpt 6875 . . 3 (𝑀 ∈ V → (subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
92, 8syl 17 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
10 breq2 5078 . . . . . . . 8 (𝑘 = 𝐾 → (𝑖 < 𝑘𝑖 < 𝐾))
1110ifbid 4482 . . . . . . 7 (𝑘 = 𝐾 → if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)))
1211opeq1d 4810 . . . . . 6 (𝑘 = 𝐾 → ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)
1312mpoeq3dv 7354 . . . . 5 (𝑘 = 𝐾 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))
14 breq2 5078 . . . . . . . 8 (𝑙 = 𝐿 → (𝑗 < 𝑙𝑗 < 𝐿))
1514ifbid 4482 . . . . . . 7 (𝑙 = 𝐿 → if(𝑗 < 𝑙, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)))
1615opeq2d 4811 . . . . . 6 (𝑙 = 𝐿 → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
1716mpoeq3dv 7354 . . . . 5 (𝑙 = 𝐿 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
1813, 17sylan9eq 2798 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
1918adantl 482 . . 3 (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
2019coeq2d 5771 . 2 (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
21 simp1 1135 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝐾 ∈ ℕ)
22 simp2 1136 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝐿 ∈ ℕ)
23 simp3 1137 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → 𝑀𝑉)
246, 6mpoex 7920 . . . 4 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V
2524a1i 11 . . 3 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V)
26 coexg 7776 . . 3 ((𝑀𝑉 ∧ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∈ V) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ∈ V)
2723, 25, 26syl2anc 584 . 2 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ∈ V)
289, 20, 21, 22, 27ovmpod 7425 1 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459  cop 4567   class class class wbr 5074  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  1c1 10872   + caddc 10874   < clt 11009  cn 11973  subMat1csmat 31743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-smat 31744
This theorem is referenced by:  smatrcl  31746  smatlem  31747
  Copyright terms: Public domain W3C validator