| Step | Hyp | Ref
| Expression |
| 1 | | elex 3501 |
. . . 4
⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) |
| 2 | 1 | 3ad2ant3 1136 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → 𝑀 ∈ V) |
| 3 | | coeq1 5868 |
. . . . 5
⊢ (𝑚 = 𝑀 → (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉))) |
| 4 | 3 | mpoeq3dv 7512 |
. . . 4
⊢ (𝑚 = 𝑀 → (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉))) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
| 5 | | df-smat 33793 |
. . . 4
⊢ subMat1 =
(𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
| 6 | | nnex 12272 |
. . . . 5
⊢ ℕ
∈ V |
| 7 | 6, 6 | mpoex 8104 |
. . . 4
⊢ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉))) ∈ V |
| 8 | 4, 5, 7 | fvmpt 7016 |
. . 3
⊢ (𝑀 ∈ V →
(subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
| 9 | 2, 8 | syl 17 |
. 2
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (subMat1‘𝑀) = (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
| 10 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (𝑖 < 𝑘 ↔ 𝑖 < 𝐾)) |
| 11 | 10 | ifbid 4549 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐾, 𝑖, (𝑖 + 1))) |
| 12 | 11 | opeq1d 4879 |
. . . . . 6
⊢ (𝑘 = 𝐾 → 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉 = 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉) |
| 13 | 12 | mpoeq3dv 7512 |
. . . . 5
⊢ (𝑘 = 𝐾 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)) |
| 14 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑙 = 𝐿 → (𝑗 < 𝑙 ↔ 𝑗 < 𝐿)) |
| 15 | 14 | ifbid 4549 |
. . . . . . 7
⊢ (𝑙 = 𝐿 → if(𝑗 < 𝑙, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))) |
| 16 | 15 | opeq2d 4880 |
. . . . . 6
⊢ (𝑙 = 𝐿 → 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉 = 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) |
| 17 | 16 | mpoeq3dv 7512 |
. . . . 5
⊢ (𝑙 = 𝐿 → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)) |
| 18 | 13, 17 | sylan9eq 2797 |
. . . 4
⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)) |
| 19 | 18 | adantl 481 |
. . 3
⊢ (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)) |
| 20 | 19 | coeq2d 5873 |
. 2
⊢ (((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) |
| 21 | | simp1 1137 |
. 2
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → 𝐾 ∈ ℕ) |
| 22 | | simp2 1138 |
. 2
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → 𝐿 ∈ ℕ) |
| 23 | | simp3 1139 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → 𝑀 ∈ 𝑉) |
| 24 | 6, 6 | mpoex 8104 |
. . . 4
⊢ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) ∈ V |
| 25 | 24 | a1i 11 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) ∈ V) |
| 26 | | coexg 7951 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) ∈ V) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)) ∈ V) |
| 27 | 23, 25, 26 | syl2anc 584 |
. 2
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)) ∈ V) |
| 28 | 9, 20, 21, 22, 27 | ovmpod 7585 |
1
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) |