MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subma Structured version   Visualization version   GIF version

Definition df-subma 22078
Description: Define the submatrices of a square matrix. A submatrix is obtained by deleting a row and a column of the original matrix. Since the indices of a matrix need not to be sequential integers, it does not matter that there may be gaps in the numbering of the indices for the submatrix. The determinants of such submatrices are called the "minors" of the original matrix. (Contributed by AV, 27-Dec-2018.)
Assertion
Ref Expression
df-subma subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑖,𝑗,𝑘,𝑙

Detailed syntax breakdown of Definition df-subma
StepHypRef Expression
1 csubma 22077 . 2 class subMat
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3474 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1540 . . . . . 6 class 𝑛
73cv 1540 . . . . . 6 class 𝑟
8 cmat 21906 . . . . . 6 class Mat
96, 7, 8co 7408 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 17143 . . . . 5 class Base
119, 10cfv 6543 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vk . . . . 5 setvar 𝑘
13 vl . . . . 5 setvar 𝑙
14 vi . . . . . 6 setvar 𝑖
15 vj . . . . . 6 setvar 𝑗
1612cv 1540 . . . . . . . 8 class 𝑘
1716csn 4628 . . . . . . 7 class {𝑘}
186, 17cdif 3945 . . . . . 6 class (𝑛 ∖ {𝑘})
1913cv 1540 . . . . . . . 8 class 𝑙
2019csn 4628 . . . . . . 7 class {𝑙}
216, 20cdif 3945 . . . . . 6 class (𝑛 ∖ {𝑙})
2214cv 1540 . . . . . . 7 class 𝑖
2315cv 1540 . . . . . . 7 class 𝑗
245cv 1540 . . . . . . 7 class 𝑚
2522, 23, 24co 7408 . . . . . 6 class (𝑖𝑚𝑗)
2614, 15, 18, 21, 25cmpo 7410 . . . . 5 class (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))
2712, 13, 6, 6, 26cmpo 7410 . . . 4 class (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))
285, 11, 27cmpt 5231 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
292, 3, 4, 4, 28cmpo 7410 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
301, 29wceq 1541 1 wff subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
This definition is referenced by:  submafval  22080
  Copyright terms: Public domain W3C validator