MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subma Structured version   Visualization version   GIF version

Definition df-subma 22466
Description: Define the submatrices of a square matrix. A submatrix is obtained by deleting a row and a column of the original matrix. Since the indices of a matrix need not to be sequential integers, it does not matter that there may be gaps in the numbering of the indices for the submatrix. The determinants of such submatrices are called the "minors" of the original matrix. (Contributed by AV, 27-Dec-2018.)
Assertion
Ref Expression
df-subma subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑖,𝑗,𝑘,𝑙

Detailed syntax breakdown of Definition df-subma
StepHypRef Expression
1 csubma 22465 . 2 class subMat
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3469 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1533 . . . . . 6 class 𝑛
73cv 1533 . . . . . 6 class 𝑟
8 cmat 22294 . . . . . 6 class Mat
96, 7, 8co 7414 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 17171 . . . . 5 class Base
119, 10cfv 6542 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vk . . . . 5 setvar 𝑘
13 vl . . . . 5 setvar 𝑙
14 vi . . . . . 6 setvar 𝑖
15 vj . . . . . 6 setvar 𝑗
1612cv 1533 . . . . . . . 8 class 𝑘
1716csn 4624 . . . . . . 7 class {𝑘}
186, 17cdif 3941 . . . . . 6 class (𝑛 ∖ {𝑘})
1913cv 1533 . . . . . . . 8 class 𝑙
2019csn 4624 . . . . . . 7 class {𝑙}
216, 20cdif 3941 . . . . . 6 class (𝑛 ∖ {𝑙})
2214cv 1533 . . . . . . 7 class 𝑖
2315cv 1533 . . . . . . 7 class 𝑗
245cv 1533 . . . . . . 7 class 𝑚
2522, 23, 24co 7414 . . . . . 6 class (𝑖𝑚𝑗)
2614, 15, 18, 21, 25cmpo 7416 . . . . 5 class (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))
2712, 13, 6, 6, 26cmpo 7416 . . . 4 class (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))
285, 11, 27cmpt 5225 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
292, 3, 4, 4, 28cmpo 7416 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
301, 29wceq 1534 1 wff subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
This definition is referenced by:  submafval  22468
  Copyright terms: Public domain W3C validator