Detailed syntax breakdown of Definition df-subma
Step | Hyp | Ref
| Expression |
1 | | csubma 21721 |
. 2
class
subMat |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3431 |
. . 3
class
V |
5 | | vm |
. . . 4
setvar 𝑚 |
6 | 2 | cv 1541 |
. . . . . 6
class 𝑛 |
7 | 3 | cv 1541 |
. . . . . 6
class 𝑟 |
8 | | cmat 21550 |
. . . . . 6
class
Mat |
9 | 6, 7, 8 | co 7269 |
. . . . 5
class (𝑛 Mat 𝑟) |
10 | | cbs 16908 |
. . . . 5
class
Base |
11 | 9, 10 | cfv 6431 |
. . . 4
class
(Base‘(𝑛 Mat
𝑟)) |
12 | | vk |
. . . . 5
setvar 𝑘 |
13 | | vl |
. . . . 5
setvar 𝑙 |
14 | | vi |
. . . . . 6
setvar 𝑖 |
15 | | vj |
. . . . . 6
setvar 𝑗 |
16 | 12 | cv 1541 |
. . . . . . . 8
class 𝑘 |
17 | 16 | csn 4567 |
. . . . . . 7
class {𝑘} |
18 | 6, 17 | cdif 3889 |
. . . . . 6
class (𝑛 ∖ {𝑘}) |
19 | 13 | cv 1541 |
. . . . . . . 8
class 𝑙 |
20 | 19 | csn 4567 |
. . . . . . 7
class {𝑙} |
21 | 6, 20 | cdif 3889 |
. . . . . 6
class (𝑛 ∖ {𝑙}) |
22 | 14 | cv 1541 |
. . . . . . 7
class 𝑖 |
23 | 15 | cv 1541 |
. . . . . . 7
class 𝑗 |
24 | 5 | cv 1541 |
. . . . . . 7
class 𝑚 |
25 | 22, 23, 24 | co 7269 |
. . . . . 6
class (𝑖𝑚𝑗) |
26 | 14, 15, 18, 21, 25 | cmpo 7271 |
. . . . 5
class (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)) |
27 | 12, 13, 6, 6, 26 | cmpo 7271 |
. . . 4
class (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))) |
28 | 5, 11, 27 | cmpt 5162 |
. . 3
class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) |
29 | 2, 3, 4, 4, 28 | cmpo 7271 |
. 2
class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) |
30 | 1, 29 | wceq 1542 |
1
wff subMat =
(𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) |