Detailed syntax breakdown of Definition df-subma
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csubma 22583 | . 2
class 
subMat | 
| 2 |  | vn | . . 3
setvar 𝑛 | 
| 3 |  | vr | . . 3
setvar 𝑟 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 |  | vm | . . . 4
setvar 𝑚 | 
| 6 | 2 | cv 1538 | . . . . . 6
class 𝑛 | 
| 7 | 3 | cv 1538 | . . . . . 6
class 𝑟 | 
| 8 |  | cmat 22412 | . . . . . 6
class 
Mat | 
| 9 | 6, 7, 8 | co 7432 | . . . . 5
class (𝑛 Mat 𝑟) | 
| 10 |  | cbs 17248 | . . . . 5
class
Base | 
| 11 | 9, 10 | cfv 6560 | . . . 4
class
(Base‘(𝑛 Mat
𝑟)) | 
| 12 |  | vk | . . . . 5
setvar 𝑘 | 
| 13 |  | vl | . . . . 5
setvar 𝑙 | 
| 14 |  | vi | . . . . . 6
setvar 𝑖 | 
| 15 |  | vj | . . . . . 6
setvar 𝑗 | 
| 16 | 12 | cv 1538 | . . . . . . . 8
class 𝑘 | 
| 17 | 16 | csn 4625 | . . . . . . 7
class {𝑘} | 
| 18 | 6, 17 | cdif 3947 | . . . . . 6
class (𝑛 ∖ {𝑘}) | 
| 19 | 13 | cv 1538 | . . . . . . . 8
class 𝑙 | 
| 20 | 19 | csn 4625 | . . . . . . 7
class {𝑙} | 
| 21 | 6, 20 | cdif 3947 | . . . . . 6
class (𝑛 ∖ {𝑙}) | 
| 22 | 14 | cv 1538 | . . . . . . 7
class 𝑖 | 
| 23 | 15 | cv 1538 | . . . . . . 7
class 𝑗 | 
| 24 | 5 | cv 1538 | . . . . . . 7
class 𝑚 | 
| 25 | 22, 23, 24 | co 7432 | . . . . . 6
class (𝑖𝑚𝑗) | 
| 26 | 14, 15, 18, 21, 25 | cmpo 7434 | . . . . 5
class (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)) | 
| 27 | 12, 13, 6, 6, 26 | cmpo 7434 | . . . 4
class (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))) | 
| 28 | 5, 11, 27 | cmpt 5224 | . . 3
class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) | 
| 29 | 2, 3, 4, 4, 28 | cmpo 7434 | . 2
class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) | 
| 30 | 1, 29 | wceq 1539 | 1
wff  subMat =
(𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) |