MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subma Structured version   Visualization version   GIF version

Definition df-subma 22471
Description: Define the submatrices of a square matrix. A submatrix is obtained by deleting a row and a column of the original matrix. Since the indices of a matrix need not to be sequential integers, it does not matter that there may be gaps in the numbering of the indices for the submatrix. The determinants of such submatrices are called the "minors" of the original matrix. (Contributed by AV, 27-Dec-2018.)
Assertion
Ref Expression
df-subma subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
Distinct variable group:   𝑛,𝑟,𝑚,𝑖,𝑗,𝑘,𝑙

Detailed syntax breakdown of Definition df-subma
StepHypRef Expression
1 csubma 22470 . 2 class subMat
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cvv 3450 . . 3 class V
5 vm . . . 4 setvar 𝑚
62cv 1539 . . . . . 6 class 𝑛
73cv 1539 . . . . . 6 class 𝑟
8 cmat 22301 . . . . . 6 class Mat
96, 7, 8co 7390 . . . . 5 class (𝑛 Mat 𝑟)
10 cbs 17186 . . . . 5 class Base
119, 10cfv 6514 . . . 4 class (Base‘(𝑛 Mat 𝑟))
12 vk . . . . 5 setvar 𝑘
13 vl . . . . 5 setvar 𝑙
14 vi . . . . . 6 setvar 𝑖
15 vj . . . . . 6 setvar 𝑗
1612cv 1539 . . . . . . . 8 class 𝑘
1716csn 4592 . . . . . . 7 class {𝑘}
186, 17cdif 3914 . . . . . 6 class (𝑛 ∖ {𝑘})
1913cv 1539 . . . . . . . 8 class 𝑙
2019csn 4592 . . . . . . 7 class {𝑙}
216, 20cdif 3914 . . . . . 6 class (𝑛 ∖ {𝑙})
2214cv 1539 . . . . . . 7 class 𝑖
2315cv 1539 . . . . . . 7 class 𝑗
245cv 1539 . . . . . . 7 class 𝑚
2522, 23, 24co 7390 . . . . . 6 class (𝑖𝑚𝑗)
2614, 15, 18, 21, 25cmpo 7392 . . . . 5 class (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))
2712, 13, 6, 6, 26cmpo 7392 . . . 4 class (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))
285, 11, 27cmpt 5191 . . 3 class (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
292, 3, 4, 4, 28cmpo 7392 . 2 class (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
301, 29wceq 1540 1 wff subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
This definition is referenced by:  submafval  22473
  Copyright terms: Public domain W3C validator