Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sply Structured version   Visualization version   GIF version

Definition df-sply 33551
Description: Define symmetric polynomials. See splyval 33552 for a more readable expression. (Contributed by Thierry Arnoux, 11-Jan-2026.)
Assertion
Ref Expression
df-sply SymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))))
Distinct variable group:   𝑖,𝑟,𝑑,𝑓,𝑥,

Detailed syntax breakdown of Definition df-sply
StepHypRef Expression
1 csply 33550 . 2 class SymPoly
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar 𝑟
4 cvv 3436 . . 3 class V
52cv 1539 . . . . . 6 class 𝑖
63cv 1539 . . . . . 6 class 𝑟
7 cmpl 21813 . . . . . 6 class mPoly
85, 6, 7co 7349 . . . . 5 class (𝑖 mPoly 𝑟)
9 cbs 17120 . . . . 5 class Base
108, 9cfv 6482 . . . 4 class (Base‘(𝑖 mPoly 𝑟))
11 vd . . . . 5 setvar 𝑑
12 vf . . . . 5 setvar 𝑓
13 csymg 19248 . . . . . . 7 class SymGrp
145, 13cfv 6482 . . . . . 6 class (SymGrp‘𝑖)
1514, 9cfv 6482 . . . . 5 class (Base‘(SymGrp‘𝑖))
16 vx . . . . . 6 setvar 𝑥
17 vh . . . . . . . . 9 setvar
1817cv 1539 . . . . . . . 8 class
19 cc0 11009 . . . . . . . 8 class 0
20 cfsupp 9251 . . . . . . . 8 class finSupp
2118, 19, 20wbr 5092 . . . . . . 7 wff finSupp 0
22 cn0 12384 . . . . . . . 8 class 0
23 cmap 8753 . . . . . . . 8 class m
2422, 5, 23co 7349 . . . . . . 7 class (ℕ0m 𝑖)
2521, 17, 24crab 3394 . . . . . 6 class { ∈ (ℕ0m 𝑖) ∣ finSupp 0}
2616cv 1539 . . . . . . . 8 class 𝑥
2711cv 1539 . . . . . . . 8 class 𝑑
2826, 27ccom 5623 . . . . . . 7 class (𝑥𝑑)
2912cv 1539 . . . . . . 7 class 𝑓
3028, 29cfv 6482 . . . . . 6 class (𝑓‘(𝑥𝑑))
3116, 25, 30cmpt 5173 . . . . 5 class (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑)))
3211, 12, 15, 10, 31cmpo 7351 . . . 4 class (𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))
33 cfxp 33106 . . . 4 class FixPts
3410, 32, 33co 7349 . . 3 class ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑)))))
352, 3, 4, 4, 34cmpo 7351 . 2 class (𝑖 ∈ V, 𝑟 ∈ V ↦ ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))))
361, 35wceq 1540 1 wff SymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))))
Colors of variables: wff setvar class
This definition is referenced by:  splyval  33552
  Copyright terms: Public domain W3C validator