Detailed syntax breakdown of Definition df-sply
| Step | Hyp | Ref
| Expression |
| 1 | | csply 33550 |
. 2
class
SymPoly |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3436 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑖 |
| 6 | 3 | cv 1539 |
. . . . . 6
class 𝑟 |
| 7 | | cmpl 21813 |
. . . . . 6
class
mPoly |
| 8 | 5, 6, 7 | co 7349 |
. . . . 5
class (𝑖 mPoly 𝑟) |
| 9 | | cbs 17120 |
. . . . 5
class
Base |
| 10 | 8, 9 | cfv 6482 |
. . . 4
class
(Base‘(𝑖 mPoly
𝑟)) |
| 11 | | vd |
. . . . 5
setvar 𝑑 |
| 12 | | vf |
. . . . 5
setvar 𝑓 |
| 13 | | csymg 19248 |
. . . . . . 7
class
SymGrp |
| 14 | 5, 13 | cfv 6482 |
. . . . . 6
class
(SymGrp‘𝑖) |
| 15 | 14, 9 | cfv 6482 |
. . . . 5
class
(Base‘(SymGrp‘𝑖)) |
| 16 | | vx |
. . . . . 6
setvar 𝑥 |
| 17 | | vh |
. . . . . . . . 9
setvar ℎ |
| 18 | 17 | cv 1539 |
. . . . . . . 8
class ℎ |
| 19 | | cc0 11009 |
. . . . . . . 8
class
0 |
| 20 | | cfsupp 9251 |
. . . . . . . 8
class
finSupp |
| 21 | 18, 19, 20 | wbr 5092 |
. . . . . . 7
wff ℎ finSupp 0 |
| 22 | | cn0 12384 |
. . . . . . . 8
class
ℕ0 |
| 23 | | cmap 8753 |
. . . . . . . 8
class
↑m |
| 24 | 22, 5, 23 | co 7349 |
. . . . . . 7
class
(ℕ0 ↑m 𝑖) |
| 25 | 21, 17, 24 | crab 3394 |
. . . . . 6
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0} |
| 26 | 16 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 27 | 11 | cv 1539 |
. . . . . . . 8
class 𝑑 |
| 28 | 26, 27 | ccom 5623 |
. . . . . . 7
class (𝑥 ∘ 𝑑) |
| 29 | 12 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 30 | 28, 29 | cfv 6482 |
. . . . . 6
class (𝑓‘(𝑥 ∘ 𝑑)) |
| 31 | 16, 25, 30 | cmpt 5173 |
. . . . 5
class (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) |
| 32 | 11, 12, 15, 10, 31 | cmpo 7351 |
. . . 4
class (𝑑 ∈
(Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 33 | | cfxp 33106 |
. . . 4
class
FixPts |
| 34 | 10, 32, 33 | co 7349 |
. . 3
class
((Base‘(𝑖
mPoly 𝑟))FixPts(𝑑 ∈
(Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 35 | 2, 3, 4, 4, 34 | cmpo 7351 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))))) |
| 36 | 1, 35 | wceq 1540 |
1
wff SymPoly =
(𝑖 ∈ V, 𝑟 ∈ V ↦
((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))))) |