Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-esply Structured version   Visualization version   GIF version

Definition df-esply 33549
Description: Define elementary symmetric polynomials. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Assertion
Ref Expression
df-esply eSymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))))
Distinct variable group:   𝑖,𝑟,𝑘,,𝑐

Detailed syntax breakdown of Definition df-esply
StepHypRef Expression
1 cesply 33547 . 2 class eSymPoly
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar 𝑟
4 cvv 3433 . . 3 class V
5 vk . . . 4 setvar 𝑘
6 cn0 12372 . . . 4 class 0
73cv 1539 . . . . . 6 class 𝑟
8 czrh 21390 . . . . . 6 class ℤRHom
97, 8cfv 6476 . . . . 5 class (ℤRHom‘𝑟)
102cv 1539 . . . . . . . 8 class 𝑖
11 cind 32786 . . . . . . . 8 class 𝟭
1210, 11cfv 6476 . . . . . . 7 class (𝟭‘𝑖)
13 vc . . . . . . . . . . 11 setvar 𝑐
1413cv 1539 . . . . . . . . . 10 class 𝑐
15 chash 14225 . . . . . . . . . 10 class
1614, 15cfv 6476 . . . . . . . . 9 class (♯‘𝑐)
175cv 1539 . . . . . . . . 9 class 𝑘
1816, 17wceq 1540 . . . . . . . 8 wff (♯‘𝑐) = 𝑘
1910cpw 4547 . . . . . . . 8 class 𝒫 𝑖
2018, 13, 19crab 3392 . . . . . . 7 class {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}
2112, 20cima 5616 . . . . . 6 class ((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})
22 vh . . . . . . . . . 10 setvar
2322cv 1539 . . . . . . . . 9 class
24 cc0 10997 . . . . . . . . 9 class 0
25 cfsupp 9239 . . . . . . . . 9 class finSupp
2623, 24, 25wbr 5088 . . . . . . . 8 wff finSupp 0
27 cmap 8744 . . . . . . . . 9 class m
286, 10, 27co 7340 . . . . . . . 8 class (ℕ0m 𝑖)
2926, 22, 28crab 3392 . . . . . . 7 class { ∈ (ℕ0m 𝑖) ∣ finSupp 0}
3029, 11cfv 6476 . . . . . 6 class (𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})
3121, 30cfv 6476 . . . . 5 class ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))
329, 31ccom 5617 . . . 4 class ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))
335, 6, 32cmpt 5169 . . 3 class (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))))
342, 3, 4, 4, 33cmpo 7342 . 2 class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))))
351, 34wceq 1540 1 wff eSymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))))
Colors of variables: wff setvar class
This definition is referenced by:  esplyval  33553
  Copyright terms: Public domain W3C validator