Detailed syntax breakdown of Definition df-esply
| Step | Hyp | Ref
| Expression |
| 1 | | cesply 33547 |
. 2
class
eSymPoly |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3433 |
. . 3
class
V |
| 5 | | vk |
. . . 4
setvar 𝑘 |
| 6 | | cn0 12372 |
. . . 4
class
ℕ0 |
| 7 | 3 | cv 1539 |
. . . . . 6
class 𝑟 |
| 8 | | czrh 21390 |
. . . . . 6
class
ℤRHom |
| 9 | 7, 8 | cfv 6476 |
. . . . 5
class
(ℤRHom‘𝑟) |
| 10 | 2 | cv 1539 |
. . . . . . . 8
class 𝑖 |
| 11 | | cind 32786 |
. . . . . . . 8
class
𝟭 |
| 12 | 10, 11 | cfv 6476 |
. . . . . . 7
class
(𝟭‘𝑖) |
| 13 | | vc |
. . . . . . . . . . 11
setvar 𝑐 |
| 14 | 13 | cv 1539 |
. . . . . . . . . 10
class 𝑐 |
| 15 | | chash 14225 |
. . . . . . . . . 10
class
♯ |
| 16 | 14, 15 | cfv 6476 |
. . . . . . . . 9
class
(♯‘𝑐) |
| 17 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑘 |
| 18 | 16, 17 | wceq 1540 |
. . . . . . . 8
wff
(♯‘𝑐) =
𝑘 |
| 19 | 10 | cpw 4547 |
. . . . . . . 8
class 𝒫
𝑖 |
| 20 | 18, 13, 19 | crab 3392 |
. . . . . . 7
class {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘} |
| 21 | 12, 20 | cima 5616 |
. . . . . 6
class
((𝟭‘𝑖)
“ {𝑐 ∈ 𝒫
𝑖 ∣
(♯‘𝑐) = 𝑘}) |
| 22 | | vh |
. . . . . . . . . 10
setvar ℎ |
| 23 | 22 | cv 1539 |
. . . . . . . . 9
class ℎ |
| 24 | | cc0 10997 |
. . . . . . . . 9
class
0 |
| 25 | | cfsupp 9239 |
. . . . . . . . 9
class
finSupp |
| 26 | 23, 24, 25 | wbr 5088 |
. . . . . . . 8
wff ℎ finSupp 0 |
| 27 | | cmap 8744 |
. . . . . . . . 9
class
↑m |
| 28 | 6, 10, 27 | co 7340 |
. . . . . . . 8
class
(ℕ0 ↑m 𝑖) |
| 29 | 26, 22, 28 | crab 3392 |
. . . . . . 7
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0} |
| 30 | 29, 11 | cfv 6476 |
. . . . . 6
class
(𝟭‘{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ ℎ finSupp 0}) |
| 31 | 21, 30 | cfv 6476 |
. . . . 5
class
((𝟭‘{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ ℎ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})) |
| 32 | 9, 31 | ccom 5617 |
. . . 4
class
((ℤRHom‘𝑟) ∘ ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))) |
| 33 | 5, 6, 32 | cmpt 5169 |
. . 3
class (𝑘 ∈ ℕ0
↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))) |
| 34 | 2, 3, 4, 4, 33 | cmpo 7342 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑟)
∘ ((𝟭‘{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ ℎ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))))) |
| 35 | 1, 34 | wceq 1540 |
1
wff eSymPoly =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0
↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))))) |