| Step | Hyp | Ref
| Expression |
| 1 | | df-sply 33551 |
. . 3
⊢ SymPoly =
(𝑖 ∈ V, 𝑟 ∈ V ↦
((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))))) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → SymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))))) |
| 3 | | oveq12 7358 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅)) |
| 4 | 3 | fveq2d 6826 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘(𝐼 mPoly 𝑅))) |
| 5 | | splyval.m |
. . . . 5
⊢ 𝑀 = (Base‘(𝐼 mPoly 𝑅)) |
| 6 | 4, 5 | eqtr4di 2782 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝑀) |
| 7 | | fveq2 6822 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → (SymGrp‘𝑖) = (SymGrp‘𝐼)) |
| 8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (SymGrp‘𝑖) = (SymGrp‘𝐼)) |
| 9 | | splyval.s |
. . . . . . . . 9
⊢ 𝑆 = (SymGrp‘𝐼) |
| 10 | 8, 9 | eqtr4di 2782 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (SymGrp‘𝑖) = 𝑆) |
| 11 | 10 | fveq2d 6826 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘(SymGrp‘𝑖)) = (Base‘𝑆)) |
| 12 | | splyval.p |
. . . . . . 7
⊢ 𝑃 = (Base‘𝑆) |
| 13 | 11, 12 | eqtr4di 2782 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘(SymGrp‘𝑖)) = 𝑃) |
| 14 | | oveq2 7357 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
| 16 | 15 | rabeqdv 3410 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 17 | 16 | mpteq1d 5182 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 18 | 13, 6, 17 | mpoeq123dv 7424 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 19 | | splyval.a |
. . . . 5
⊢ 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 20 | 18, 19 | eqtr4di 2782 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) = 𝐴) |
| 21 | 6, 20 | oveq12d 7367 |
. . 3
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) = (𝑀FixPts𝐴)) |
| 22 | 21 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) = (𝑀FixPts𝐴)) |
| 23 | | splyval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 24 | 23 | elexd 3460 |
. 2
⊢ (𝜑 → 𝐼 ∈ V) |
| 25 | | splyval.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| 26 | 25 | elexd 3460 |
. 2
⊢ (𝜑 → 𝑅 ∈ V) |
| 27 | | ovexd 7384 |
. 2
⊢ (𝜑 → (𝑀FixPts𝐴) ∈ V) |
| 28 | 2, 22, 24, 26, 27 | ovmpod 7501 |
1
⊢ (𝜑 → (𝐼SymPoly𝑅) = (𝑀FixPts𝐴)) |