Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  splyval Structured version   Visualization version   GIF version

Theorem splyval 33552
Description: The symmetric polynomials for a given index 𝐼 of variables and base ring 𝑅. These are the fixed points of the action 𝐴 which permutes variables. (Contributed by Thierry Arnoux, 11-Jan-2026.)
Hypotheses
Ref Expression
splyval.s 𝑆 = (SymGrp‘𝐼)
splyval.p 𝑃 = (Base‘𝑆)
splyval.m 𝑀 = (Base‘(𝐼 mPoly 𝑅))
splyval.a 𝐴 = (𝑑𝑃, 𝑓𝑀 ↦ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))
splyval.i (𝜑𝐼𝑉)
splyval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
splyval (𝜑 → (𝐼SymPoly𝑅) = (𝑀FixPts𝐴))
Distinct variable groups:   𝐼,𝑑,𝑓,,𝑥   𝑅,𝑑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,,𝑑)   𝐴(𝑥,𝑓,,𝑑)   𝑃(𝑥,𝑓,,𝑑)   𝑅(𝑥,)   𝑆(𝑥,𝑓,,𝑑)   𝑀(𝑥,𝑓,,𝑑)   𝑉(𝑥,𝑓,,𝑑)   𝑊(𝑥,𝑓,,𝑑)

Proof of Theorem splyval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sply 33551 . . 3 SymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))))
21a1i 11 . 2 (𝜑 → SymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑)))))))
3 oveq12 7358 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
43fveq2d 6826 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘(𝐼 mPoly 𝑅)))
5 splyval.m . . . . 5 𝑀 = (Base‘(𝐼 mPoly 𝑅))
64, 5eqtr4di 2782 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝑀)
7 fveq2 6822 . . . . . . . . . 10 (𝑖 = 𝐼 → (SymGrp‘𝑖) = (SymGrp‘𝐼))
87adantr 480 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (SymGrp‘𝑖) = (SymGrp‘𝐼))
9 splyval.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐼)
108, 9eqtr4di 2782 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (SymGrp‘𝑖) = 𝑆)
1110fveq2d 6826 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(SymGrp‘𝑖)) = (Base‘𝑆))
12 splyval.p . . . . . . 7 𝑃 = (Base‘𝑆)
1311, 12eqtr4di 2782 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(SymGrp‘𝑖)) = 𝑃)
14 oveq2 7357 . . . . . . . . 9 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1514adantr 480 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1615rabeqdv 3410 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
1716mpteq1d 5182 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))) = (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))
1813, 6, 17mpoeq123dv 7424 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑)))) = (𝑑𝑃, 𝑓𝑀 ↦ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑)))))
19 splyval.a . . . . 5 𝐴 = (𝑑𝑃, 𝑓𝑀 ↦ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))
2018, 19eqtr4di 2782 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑)))) = 𝐴)
216, 20oveq12d 7367 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))) = (𝑀FixPts𝐴))
2221adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → ((Base‘(𝑖 mPoly 𝑟))FixPts(𝑑 ∈ (Base‘(SymGrp‘𝑖)), 𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))) = (𝑀FixPts𝐴))
23 splyval.i . . 3 (𝜑𝐼𝑉)
2423elexd 3460 . 2 (𝜑𝐼 ∈ V)
25 splyval.r . . 3 (𝜑𝑅𝑊)
2625elexd 3460 . 2 (𝜑𝑅 ∈ V)
27 ovexd 7384 . 2 (𝜑 → (𝑀FixPts𝐴) ∈ V)
282, 22, 24, 26, 27ovmpod 7501 1 (𝜑 → (𝐼SymPoly𝑅) = (𝑀FixPts𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436   class class class wbr 5092  cmpt 5173  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  m cmap 8753   finSupp cfsupp 9251  0cc0 11009  0cn0 12384  Basecbs 17120  SymGrpcsymg 19248   mPoly cmpl 21813  FixPtscfxp 33106  SymPolycsply 33550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-sply 33551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator