HomeHome Metamath Proof Explorer
Theorem List (p. 338 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 33701-33800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremminplymindeg 33701 The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝐷 = (deg1‘(𝐸s 𝐹))    &   𝑍 = (0g𝑃)    &   𝑈 = (Base‘𝑃)    &   (𝜑 → ((𝑂𝐻)‘𝐴) = 0 )    &   (𝜑𝐻𝑈)    &   (𝜑𝐻𝑍)       (𝜑 → (𝐷‘(𝑀𝐴)) ≤ (𝐷𝐻))
 
Theoremminplyann 33702 The minimal polynomial for 𝐴 annihilates 𝐴 (Contributed by Thierry Arnoux, 25-Apr-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)       (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = 0 )
 
Theoremminplyirredlem 33703 Lemma for minplyirred 33704. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝑍 = (0g𝑃)    &   (𝜑 → (𝑀𝐴) ≠ 𝑍)    &   (𝜑𝐺 ∈ (Base‘𝑃))    &   (𝜑𝐻 ∈ (Base‘𝑃))    &   (𝜑 → (𝐺(.r𝑃)𝐻) = (𝑀𝐴))    &   (𝜑 → ((𝑂𝐺)‘𝐴) = (0g𝐸))    &   (𝜑𝐺𝑍)    &   (𝜑𝐻𝑍)       (𝜑𝐻 ∈ (Unit‘𝑃))
 
Theoremminplyirred 33704 A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝑍 = (0g𝑃)    &   (𝜑 → (𝑀𝐴) ≠ 𝑍)       (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
 
Theoremirngnminplynz 33705 Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑍 = (0g‘(Poly1𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))       (𝜑 → (𝑀𝐴) ≠ 𝑍)
 
Theoremminplym1p 33706 A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑍 = (0g‘(Poly1𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑈 = (Monic1p‘(𝐸s 𝐹))       (𝜑 → (𝑀𝐴) ∈ 𝑈)
 
Theoremirredminply 33707 An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝑍 = (0g𝑃)    &   (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )    &   (𝜑𝐺 ∈ (Irred‘𝑃))    &   (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))       (𝜑𝐺 = (𝑀𝐴))
 
Theoremalgextdeglem1 33708 Lemma for algextdeg 33716. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))       (𝜑 → (𝐿s 𝐹) = 𝐾)
 
Theoremalgextdeglem2 33709* Lemma for algextdeg 33716. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
 
Theoremalgextdeglem3 33710* Lemma for algextdeg 33716. The quotient 𝑃 / 𝑍 of the vector space 𝑃 of polynomials by the subspace 𝑍 of polynomials annihilating 𝐴 is itself a vector space. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑𝑄 ∈ LVec)
 
Theoremalgextdeglem4 33711* Lemma for algextdeg 33716. By lmhmqusker 33410, the surjective module homomorphism 𝐺 described in algextdeglem2 33709 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
 
Theoremalgextdeglem5 33712* Lemma for algextdeg 33716. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑𝑍 = ((RSpan‘𝑃)‘{(𝑀𝐴)}))
 
Theoremalgextdeglem6 33713* Lemma for algextdeg 33716. By r1pquslmic 33596, the univariate polynomial remainder ring (𝐻s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))    &   𝑅 = (rem1p𝐾)    &   𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))       (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
 
Theoremalgextdeglem7 33714* Lemma for algextdeg 33716. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))    &   𝑅 = (rem1p𝐾)    &   𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))    &   𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))    &   (𝜑𝑋𝑈)       (𝜑 → (𝑋𝑇 ↔ (𝐻𝑋) = 𝑋))
 
Theoremalgextdeglem8 33715* Lemma for algextdeg 33716. The dimension of the univariate polynomial remainder ring (𝐻s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))    &   𝑅 = (rem1p𝐾)    &   𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))    &   𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))       (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
 
Theoremalgextdeg 33716 The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))       (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀𝐴)))
 
21.3.10.3  Quadratic Field Extensions
 
Theoremrtelextdg2lem 33717 Lemma for rtelextdg2 33718: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))    &    0 = (0g𝐸)    &   𝑃 = (Poly1𝐾)    &   𝑉 = (Base‘𝐸)    &    · = (.r𝐸)    &    + = (+g𝐸)    &    = (.g‘(mulGrp‘𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝑋𝑉)    &   (𝜑𝐴𝐹)    &   (𝜑𝐵𝐹)    &   (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )    &   𝑌 = (var1𝐾)    &    = (+g𝑃)    &    = (.r𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑈 = (algSc‘𝑃)    &   𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))       (𝜑 → (𝐿[:]𝐾) ≤ 2)
 
Theoremrtelextdg2 33718 If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))    &    0 = (0g𝐸)    &   𝑃 = (Poly1𝐾)    &   𝑉 = (Base‘𝐸)    &    · = (.r𝐸)    &    + = (+g𝐸)    &    = (.g‘(mulGrp‘𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝑋𝑉)    &   (𝜑𝐴𝐹)    &   (𝜑𝐵𝐹)    &   (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )       (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
 
21.3.10.4  Towers of quadratic extentions
 
Theoremfldext2chn 33719* In a non-empty tower 𝑇 of quadratic field extensions, the degree of the extension of the first member by the last is a power of two. (Contributed by Thierry Arnoux, 19-Jun-2025.)
< = {⟨𝑓, 𝑒⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)}    &   (𝜑𝑇 ∈ ( < ChainField))    &   (𝜑 → (𝑇‘0) = 𝑄)    &   (𝜑 → (lastS‘𝑇) = 𝐹)    &   (𝜑 → 0 < (♯‘𝑇))       (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛))
 
21.3.11  Constructible Numbers

This section defines the set of constructible points as complex numbers which can be drawn starting from two points (we take 0 and 1), and taking intersections of circles and lines.

This construction is useful for proving the impossibility of doubling the cube ( * imp2cube ), and of angle trisection ( * imp3ang )

 
Syntaxcconstr 33720 Extend class notation with the set of constructible points.
class Constr
 
Definitiondf-constr 33721* Define the set of geometrically constructible points, by recursively adding the line-line, line-circle and circle-circle intersections constructions using points in a previous iteration. (Contributed by Saveliy Skresanov, 19-Jan-2025.)
Constr = (rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1}) “ ω)
 
Theoremconstrrtll 33722 In the construction of constructible numbers, line-line intersections are solutions of linear equations, and can therefore be completely constructed. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑𝑋 = (𝐶 + (𝑅 · (𝐷𝐶))))    &   (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐷𝐶))) ≠ 0)    &   𝑁 = (𝐴 + (((((𝐴𝐶) · ((∗‘𝐷) − (∗‘𝐶))) − (((∗‘𝐴) − (∗‘𝐶)) · (𝐷𝐶))) / ((((∗‘𝐵) − (∗‘𝐴)) · (𝐷𝐶)) − ((𝐵𝐴) · ((∗‘𝐷) − (∗‘𝐶))))) · (𝐵𝐴)))       (𝜑𝑋 = 𝑁)
 
Theoremconstrrtlc1 33723 In the construction of constructible numbers, line-circle intersections are roots of a quadratic equation, non-degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑 → (abs‘(𝑋𝐶)) = (abs‘(𝐸𝐹)))    &   𝑄 = (((∗‘𝐵) − (∗‘𝐴)) / (𝐵𝐴))    &   𝑀 = (((((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶)) − (𝐶 · 𝑄)) / 𝑄)    &   𝑁 = (-((𝐶 · (((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶))) + ((𝐸𝐹) · ((∗‘𝐸) − (∗‘𝐹)))) / 𝑄)    &   (𝜑𝐴𝐵)       (𝜑 → (((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0 ∧ 𝑄 ≠ 0))
 
Theoremconstrrtlc2 33724 In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑 → (abs‘(𝑋𝐶)) = (abs‘(𝐸𝐹)))    &   (𝜑𝐴 = 𝐵)       (𝜑𝑋 = 𝐴)
 
Theoremconstrrtcclem 33725 In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. Case of non-degenerate circles. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝐴𝐷)    &   (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐶)))    &   (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))    &   𝑃 = ((𝐵𝐶) · (∗‘(𝐵𝐶)))    &   𝑄 = ((𝐸𝐹) · (∗‘(𝐸𝐹)))    &   𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴)))    &   𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴)))    &   (𝜑𝐵𝐶)    &   (𝜑𝐸𝐹)       (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0)
 
Theoremconstrrtcc 33726 In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝐴𝐷)    &   (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐶)))    &   (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))    &   𝑃 = ((𝐵𝐶) · (∗‘(𝐵𝐶)))    &   𝑄 = ((𝐸𝐹) · (∗‘(𝐸𝐹)))    &   𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴)))    &   𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴)))       (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0)
 
Theoremconstr0 33727 The first step of the construction of constructible numbers is the pair {0, 1}. In this theorem and the following, we use (𝐶𝑁) for the 𝑁-th intermediate iteration of the constructible number. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})       (𝐶‘∅) = {0, 1}
 
Theoremconstrsuc 33728* Membership in the successor step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   𝑆 = (𝐶𝑁)       (𝜑 → (𝑋 ∈ (𝐶‘suc 𝑁) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎𝑆𝑏𝑆𝑐𝑆𝑑𝑆𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑆𝑏𝑆𝑐𝑆𝑒𝑆𝑓𝑆𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑆𝑏𝑆𝑐𝑆𝑑𝑆𝑒𝑆𝑓𝑆 (𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))))
 
Theoremconstrlim 33729* Limit step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁𝑉)    &   (𝜑 → Lim 𝑁)       (𝜑 → (𝐶𝑁) = 𝑛𝑁 (𝐶𝑛))
 
Theoremconstrsscn 33730* Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)       (𝜑 → (𝐶𝑁) ⊆ ℂ)
 
Theoremconstrsslem 33731* Lemma for constrss 33733. This lemma requires the additional condition that 0 is the constructible number; that condition is removed in constrss 33733. (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   (𝜑 → 0 ∈ (𝐶𝑁))       (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
 
Theoremconstr01 33732* 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)       (𝜑 → {0, 1} ⊆ (𝐶𝑁))
 
Theoremconstrss 33733* Constructed points are in the next generation constructed points. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)       (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
 
Theoremconstrmon 33734* The construction of constructible numbers is monotonous, i.e. if the ordinal 𝑀 is less than the ordinal 𝑁, which is denoted by 𝑀𝑁, then the 𝑀-th step of the constructible numbers is included in the 𝑁-th step. (Contributed by Thierry Arnoux, 1-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   (𝜑𝑀𝑁)       (𝜑 → (𝐶𝑀) ⊆ (𝐶𝑁))
 
Theoremconstrconj 33735* If a point 𝑋 of the complex plane is constructible, so is its conjugate (∗‘𝑋). (Proposed by Saveliy Skresanov, 25-Jun-2025.) (Contributed by Thierry Arnoux, 1-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   (𝜑𝑋 ∈ (𝐶𝑁))       (𝜑 → (∗‘𝑋) ∈ (𝐶𝑁))
 
Theoremconstrfin 33736* Each step of the construction of constructible numbers is finite. (Contributed by Thierry Arnoux, 6-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ ω)       (𝜑 → (𝐶𝑁) ∈ Fin)
 
Theoremconstrelextdg2 33737* If the 𝑁-th step (𝐶𝑁) of the construction of constuctible numbers is included in a subfield 𝐹 of the complex numbers, then any element 𝑋 of the next step (𝐶‘suc 𝑁) is either in 𝐹 or in a quadratic extension of 𝐹. (Contributed by Thierry Arnoux, 6-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   𝐾 = (ℂflds 𝐹)    &   𝐿 = (ℂflds (ℂfld fldGen (𝐹 ∪ {𝑋})))    &   (𝜑𝐹 ∈ (SubDRing‘ℂfld))    &   (𝜑𝑁 ∈ On)    &   (𝜑 → (𝐶𝑁) ⊆ 𝐹)    &   (𝜑𝑋 ∈ (𝐶‘suc 𝑁))       (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
 
21.3.11.1  Impossible constructions
 
Theorem2sqr3minply 33738 The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
𝑄 = (ℂflds ℚ)    &    = (-g𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑃 = (Poly1𝑄)    &   𝐾 = (algSc‘𝑃)    &   𝑋 = (var1𝑄)    &   𝐷 = (deg1𝑄)    &   𝐹 = ((3 𝑋) (𝐾‘2))    &   𝐴 = (2↑𝑐(1 / 3))    &   𝑀 = (ℂfld minPoly ℚ)       (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
 
21.3.12  Matrices
 
21.3.12.1  Submatrices
 
Syntaxcsmat 33739 Syntax for a function generating submatrices.
class subMat1
 
Definitiondf-smat 33740* Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 22604. (Contributed by Thierry Arnoux, 18-Aug-2020.)
subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
 
Theoremsmatfval 33741* Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
 
Theoremsmatrcl 33742 Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))       (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
 
Theoremsmatlem 33743 Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐽 ∈ ℕ)    &   (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)    &   (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)       (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))
 
Theoremsmattl 33744 Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (1..^𝐾))    &   (𝜑𝐽 ∈ (1..^𝐿))       (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽))
 
Theoremsmattr 33745 Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (𝐾...𝑀))    &   (𝜑𝐽 ∈ (1..^𝐿))       (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽))
 
Theoremsmatbl 33746 Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (1..^𝐾))    &   (𝜑𝐽 ∈ (𝐿...𝑁))       (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1)))
 
Theoremsmatbr 33747 Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (𝐾...𝑀))    &   (𝜑𝐽 ∈ (𝐿...𝑁))       (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))
 
Theoremsmatcl 33748 Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))    &   𝑆 = (𝐾(subMat1‘𝑀)𝐿)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑁))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)       (𝜑𝑆𝐶)
 
Theoremmatmpo 33749* Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       (𝑀𝐵𝑀 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖𝑀𝑗)))
 
Theorem1smat1 33750 The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 22610. (Contributed by Thierry Arnoux, 19-Aug-2020.)
1 = (1r‘((1...𝑁) Mat 𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐼 ∈ (1...𝑁))       (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))
 
Theoremsubmat1n 33751 One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))
 
Theoremsubmatres 33752 Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
 
Theoremsubmateqlem1 33753 Lemma for submateq 33755. (Contributed by Thierry Arnoux, 25-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑁))    &   (𝜑𝑀 ∈ (1...(𝑁 − 1)))    &   (𝜑𝐾𝑀)       (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))
 
Theoremsubmateqlem2 33754 Lemma for submateq 33755. (Contributed by Thierry Arnoux, 26-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑁))    &   (𝜑𝑀 ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 < 𝐾)       (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾})))
 
Theoremsubmateq 33755* Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝐸𝐵)    &   (𝜑𝐹𝐵)    &   ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗))       (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽))
 
Theoremsubmatminr1 33756 If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑀𝐵)    &   𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)       (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))
 
21.3.12.2  Matrix literals
 
Syntaxclmat 33757 Extend class notation with the literal matrix conversion function.
class litMat
 
Definitiondf-lmat 33758* Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.)
litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))))
 
Theoremlmatval 33759* Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.)
(𝑀𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))))
 
Theoremlmatfval 33760* Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
𝑀 = (litMat‘𝑊)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑊 ∈ Word Word 𝑉)    &   (𝜑 → (♯‘𝑊) = 𝑁)    &   ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))       (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
 
Theoremlmatfvlem 33761* Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.)
𝑀 = (litMat‘𝑊)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑊 ∈ Word Word 𝑉)    &   (𝜑 → (♯‘𝑊) = 𝑁)    &   ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)    &   𝐾 ∈ ℕ0    &   𝐿 ∈ ℕ0    &   𝐼𝑁    &   𝐽𝑁    &   (𝐾 + 1) = 𝐼    &   (𝐿 + 1) = 𝐽    &   (𝑊𝐾) = 𝑋    &   (𝜑 → (𝑋𝐿) = 𝑌)       (𝜑 → (𝐼𝑀𝐽) = 𝑌)
 
Theoremlmatcl 33762* Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘𝑊)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑊 ∈ Word Word 𝑉)    &   (𝜑 → (♯‘𝑊) = 𝑁)    &   ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)    &   𝑉 = (Base‘𝑅)    &   𝑂 = ((1...𝑁) Mat 𝑅)    &   𝑃 = (Base‘𝑂)    &   (𝜑𝑅𝑋)       (𝜑𝑀𝑃)
 
Theoremlmat22lem 33763* Lemma for lmat22e11 33764 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
 
Theoremlmat22e11 33764 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (1𝑀1) = 𝐴)
 
Theoremlmat22e12 33765 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (1𝑀2) = 𝐵)
 
Theoremlmat22e21 33766 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (2𝑀1) = 𝐶)
 
Theoremlmat22e22 33767 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (2𝑀2) = 𝐷)
 
Theoremlmat22det 33768 The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)    &    · = (.r𝑅)    &    = (-g𝑅)    &   𝑉 = (Base‘𝑅)    &   𝐽 = ((1...2) maDet 𝑅)    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
 
21.3.12.3  Laplace expansion of determinants
 
Theoremmdetpmtr1 33769* The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐺 = (Base‘(SymGrp‘𝑁))    &   𝑆 = (pmSgn‘𝑁)    &   𝑍 = (ℤRHom‘𝑅)    &    · = (.r𝑅)    &   𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))       (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
 
Theoremmdetpmtr2 33770* The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐺 = (Base‘(SymGrp‘𝑁))    &   𝑆 = (pmSgn‘𝑁)    &   𝑍 = (ℤRHom‘𝑅)    &    · = (.r𝑅)    &   𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖𝑀(𝑃𝑗)))       (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
 
Theoremmdetpmtr12 33771* The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐺 = (Base‘(SymGrp‘𝑁))    &   𝑆 = (pmSgn‘𝑁)    &   𝑍 = (ℤRHom‘𝑅)    &    · = (.r𝑅)    &   𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑁 ∈ Fin)    &   (𝜑𝑀𝐵)    &   (𝜑𝑃𝐺)    &   (𝜑𝑄𝐺)       (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
 
Theoremmdetlap1 33772* A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐾 = (𝑁 maAdju 𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ CRing ∧ 𝑀𝐵𝐼𝑁) → (𝐷𝑀) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
 
Theoremmadjusmdetlem1 33773* Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝐺 = (Base‘(SymGrp‘(1...𝑁)))    &   𝑆 = (pmSgn‘(1...𝑁))    &   𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)    &   𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))    &   (𝜑𝑃𝐺)    &   (𝜑𝑄𝐺)    &   (𝜑 → (𝑃𝑁) = 𝐼)    &   (𝜑 → (𝑄𝑁) = 𝐽)    &   (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))       (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 
Theoremmadjusmdetlem2 33774* Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 26-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))    &   𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))       ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
 
Theoremmadjusmdetlem3 33775* Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 27-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))    &   𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))    &   𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))    &   𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))    &   𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))    &   (𝜑𝑈𝐵)       (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
 
Theoremmadjusmdetlem4 33776* Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))    &   𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))    &   𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))    &   𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))       (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 
Theoremmadjusmdet 33777 Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)       (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 
Theoremmdetlap 33778* Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)       (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
 
21.3.13  Topology
 
Theoremist0cld 33779* The predicate "is a T0 space", using closed sets. (Contributed by Thierry Arnoux, 16-Aug-2020.)
(𝜑𝐵 = 𝐽)    &   (𝜑𝐷 = (Clsd‘𝐽))       (𝜑 → (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐵𝑦𝐵 (∀𝑑𝐷 (𝑥𝑑𝑦𝑑) → 𝑥 = 𝑦))))
 
21.3.13.1  Open maps
 
Theoremtxomap 33780* Given two open maps 𝐹 and 𝐺, 𝐻 mapping pairs of sets, is also an open map for the product topology. (Contributed by Thierry Arnoux, 29-Dec-2019.)
(𝜑𝐹:𝑋𝑍)    &   (𝜑𝐺:𝑌𝑇)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑𝑀 ∈ (TopOn‘𝑇))    &   ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐿)    &   ((𝜑𝑦𝐾) → (𝐺𝑦) ∈ 𝑀)    &   (𝜑𝐴 ∈ (𝐽 ×t 𝐾))    &   𝐻 = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)       (𝜑 → (𝐻𝐴) ∈ (𝐿 ×t 𝑀))
 
21.3.13.2  Topology of the unit circle
 
Theoremqtopt1 33781* If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.)
𝑋 = 𝐽    &   (𝜑𝐽 ∈ Fre)    &   (𝜑𝐹:𝑋onto𝑌)    &   ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))       (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
 
Theoremqtophaus 33782* If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.)
𝑋 = 𝐽    &    = (𝐹𝐹)    &   𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)    &   (𝜑𝐽 ∈ Haus)    &   (𝜑𝐹:𝑋onto𝑌)    &   ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))    &   (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))       (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
 
Theoremcirctopn 33783* The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020.)
𝐼 = (0[,](2 · π))    &   𝐽 = (topGen‘ran (,))    &   𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))    &   𝐶 = (abs “ {1})       (𝐽 qTop 𝐹) = (TopOpen‘(𝐹sfld))
 
Theoremcirccn 33784* The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.)
𝐼 = (0[,](2 · π))    &   𝐽 = (topGen‘ran (,))    &   𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))    &   𝐶 = (abs “ {1})       𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))
 
21.3.13.3  Refinements
 
Theoremreff 33785* For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg 10557. (Contributed by Thierry Arnoux, 12-Jan-2020.)
(𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
 
Theoremlocfinreflem 33786* A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.)
𝑋 = 𝐽    &   (𝜑𝑈𝐽)    &   (𝜑𝑋 = 𝑈)    &   (𝜑𝑉𝐽)    &   (𝜑𝑉Ref𝑈)    &   (𝜑𝑉 ∈ (LocFin‘𝐽))       (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
 
Theoremlocfinref 33787* A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.)
𝑋 = 𝐽    &   (𝜑𝑈𝐽)    &   (𝜑𝑋 = 𝑈)    &   (𝜑𝑉𝐽)    &   (𝜑𝑉Ref𝑈)    &   (𝜑𝑉 ∈ (LocFin‘𝐽))       (𝜑 → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
 
21.3.13.4  Open cover refinement property
 
Syntaxccref 33788 The "every open cover has an 𝐴 refinement" predicate.
class CovHasRef𝐴
 
Definitiondf-cref 33789* Define a statement "every open cover has an 𝐴 refinement" , where 𝐴 is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020.)
CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦)}
 
Theoremiscref 33790* The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
𝑋 = 𝐽       (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
 
Theoremcrefeq 33791 Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.)
(𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵)
 
Theoremcreftop 33792 A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.)
(𝐽 ∈ CovHasRef𝐴𝐽 ∈ Top)
 
Theoremcrefi 33793* The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
𝑋 = 𝐽       ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
 
Theoremcrefdf 33794* A formulation of crefi 33793 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.)
𝑋 = 𝐽    &   𝐵 = CovHasRef𝐴    &   (𝑧𝐴𝜑)       ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
 
Theoremcrefss 33795 The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.)
(𝐴𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵)
 
Theoremcmpcref 33796 Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Comp = CovHasRefFin
 
Theoremcmpfiref 33797* Every open cover of a Compact space has a finite refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.)
𝑋 = 𝐽       ((𝐽 ∈ Comp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ Fin ∧ 𝑣Ref𝑈))
 
21.3.13.5  Lindelöf spaces
 
Syntaxcldlf 33798 Extend class notation with the class of all Lindelöf spaces.
class Ldlf
 
Definitiondf-ldlf 33799 Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of [BourbakiTop2] p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020.)
Ldlf = CovHasRef{𝑥𝑥 ≼ ω}
 
Theoremldlfcntref 33800* Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.)
𝑋 = 𝐽       ((𝐽 ∈ Ldlf ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >