Home | Metamath
Proof Explorer Theorem List (p. 338 of 468) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29389) |
Hilbert Space Explorer
(29390-30912) |
Users' Mathboxes
(30913-46773) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cpsl 33701 | Splitting field for a sequence of polynomials. |
class polySplitLim | ||
Definition | df-irng 33702* | Define the subring of elements of 𝑟 integral over 𝑠 in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡𝑓 “ {(0g‘𝑟)})) | ||
Definition | df-cplmet 33703* | A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx), {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) | ||
Definition | df-homlimb 33704* | The input to this function is a sequence (on ℕ) of homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined. This function returns the pair 〈𝑆, 𝐺〉 where 𝑆 is the terminal object and 𝐺 is a sequence of functions such that 𝐺(𝑛):𝑅(𝑛)⟶𝑆 and 𝐺(𝑛) = 𝐹(𝑛) ∘ 𝐺(𝑛 + 1). (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd ‘𝑥))〉) ⊆ 𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) | ||
Definition | df-homlim 33705* | The input to this function is a sequence (on ℕ) of structures 𝑅(𝑛) and homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB ‘𝑓) / 𝑒⦌⦋(1st ‘𝑒) / 𝑣⦌⦋(2nd ‘𝑒) / 𝑔⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(+g‘(𝑟‘𝑛))𝑦))〉)〉, 〈(.r‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(.r‘(𝑟‘𝑛))𝑦))〉)〉} ∪ {〈(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ (◡(𝑔‘𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟‘𝑛))}〉, 〈(dist‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔‘𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔‘𝑛)‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, (𝑥(dist‘(𝑟‘𝑛))𝑦)〉)〉, 〈(le‘ndx), ∪ 𝑛 ∈ ℕ (◡(𝑔‘𝑛) ∘ ((le‘(𝑟‘𝑛)) ∘ (𝑔‘𝑛)))〉})) | ||
Definition | df-plfl 33706* | Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ ⦋(Poly1‘𝑟) / 𝑠⦌⦋((RSpan‘𝑠)‘{𝑝}) / 𝑖⦌⦋(𝑧 ∈ (Base‘𝑟) ↦ [(𝑧( ·𝑠 ‘𝑠)(1r‘𝑠))](𝑠 ~QG 𝑖)) / 𝑓⦌〈⦋(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡⦌((𝑡 toNrmGrp (℩𝑛 ∈ (AbsVal‘𝑡)(𝑛 ∘ 𝑓) = (norm‘𝑟))) sSet 〈(le‘ndx), ⦋(𝑧 ∈ (Base‘𝑡) ↦ (℩𝑞 ∈ 𝑧 (𝑟 deg1 𝑞) < (𝑟 deg1 𝑝))) / 𝑔⦌(◡𝑔 ∘ ((le‘𝑠) ∘ 𝑔))〉), 𝑓〉) | ||
Definition | df-sfl1 33707* |
Temporary construction for the splitting field of a polynomial. The
inputs are a field 𝑟 and a polynomial 𝑝 that we
want to split,
along with a tuple 𝑗 in the same format as the output.
The output
is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the splitting field
and 𝐹
is an injective homomorphism from the original field 𝑟.
The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1‘𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly ‘𝑠) / 𝑚⦌⦋{𝑔 ∈ ((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st ‘𝑡), (𝑓 ∘ (2nd ‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝)))))) | ||
Definition | df-sfl 33708* | Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the totally ordered splitting field and 𝐹 is an injective homomorphism from the original field 𝑟. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥∃𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {〈0, 〈𝑟, ( I ↾ (Base‘𝑟))〉〉}))‘(♯‘𝑝))))) | ||
Definition | df-psl 33709* | Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring 𝑟, a strict order on 𝑟, and a sequence 𝑝:ℕ⟶(𝒫 𝑟 ∩ Fin) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ ⦋(1st ‘𝑔) / 𝑒⦌⦋(1st ‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾ (Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘ (𝑓 shift 1)) HomLim (2nd ∘ 𝑓))) | ||
Syntax | czr 33710 | Integral elements of a ring. |
class ZRing | ||
Syntax | cgf 33711 | Galois finite field. |
class GF | ||
Syntax | cgfo 33712 | Galois limit field. |
class GF∞ | ||
Syntax | ceqp 33713 | Equivalence relation for df-qp 33724. |
class ~Qp | ||
Syntax | crqp 33714 | Equivalence relation representatives for df-qp 33724. |
class /Qp | ||
Syntax | cqp 33715 | The set of 𝑝-adic rational numbers. |
class Qp | ||
Syntax | czp 33716 | The set of 𝑝-adic integers. (Not to be confused with czn 20776.) |
class Zp | ||
Syntax | cqpa 33717 | Algebraic completion of the 𝑝-adic rational numbers. |
class _Qp | ||
Syntax | ccp 33718 | Metric completion of _Qp. |
class Cp | ||
Definition | df-zrng 33719 | Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟))) | ||
Definition | df-gf 33720* | Define the Galois finite field of order 𝑝↑𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
Definition | df-gfoo 33721* | Define the Galois field of order 𝑝↑+∞, as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ GF∞ = (𝑝 ∈ ℙ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
Definition | df-eqp 33722* | Define an equivalence relation on ℤ-indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum Σ𝑘 ≤ 𝑛𝑓(𝑘)(𝑝↑𝑘) is a multiple of 𝑝↑(𝑛 + 1) for every 𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ ~Qp = (𝑝 ∈ ℙ ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) | ||
Definition | df-rqp 33723* | There is a unique element of (ℤ ↑m (0...(𝑝 − 1))) ~Qp -equivalent to any element of (ℤ ↑m ℤ), if the sequences are zero for sufficiently large negative values; this function selects that element. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ /Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ ⦋{𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ≥(◡𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦⦌(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1))))))) | ||
Definition | df-qp 33724* | Define the 𝑝-adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 10-Oct-2021.) |
⊢ Qp = (𝑝 ∈ ℙ ↦ ⦋{ℎ ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ≥(◡ℎ “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏⦌(({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑓 ∘f + 𝑔)))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓‘𝑘) · (𝑔‘(𝑛 − 𝑘))))))〉} ∪ {〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}〉}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((◡𝑓 “ (ℤ ∖ {0})), ℝ, < )))))) | ||
Definition | df-zp 33725 | Define the 𝑝-adic integers, as a subset of the 𝑝-adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ Zp = (ZRing ∘ Qp) | ||
Definition | df-qpa 33726* | Define the completion of the 𝑝-adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the 𝑛-th set the collection of polynomials with degree less than 𝑛 and with coefficients < (𝑝↑𝑛)). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial 𝑥↑(𝑝↑𝑛) − 𝑥, which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ _Qp = (𝑝 ∈ ℙ ↦ ⦋(Qp‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1‘𝑟) ∣ ((𝑟 deg1 𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))}))) | ||
Definition | df-cp 33727 | Define the metric completion of the algebraic completion of the 𝑝 -adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ Cp = ( cplMetSp ∘ _Qp) | ||
I hope someone will enjoy solving (proving) the simple equations, inequalities, and calculations from this mathbox. I have proved these problems (theorems) using the Milpgame proof assistant. (It can be downloaded from https://us.metamath.org/other/milpgame/milpgame.html.) | ||
Theorem | problem1 33728 | Practice problem 1. Clues: 5p4e9 12204 3p2e5 12197 eqtri 2765 oveq1i 7325. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ ((3 + 2) + 4) = 9 | ||
Theorem | problem2 33729 | Practice problem 2. Clues: oveq12i 7327 adddiri 11061 add4i 11272 mulcli 11055 recni 11062 2re 12120 3eqtri 2769 10re 12529 5re 12133 1re 11048 4re 12130 eqcomi 2746 5p4e9 12204 oveq1i 7325 df-3 12110. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) | ||
Theorem | problem3 33730 | Practice problem 3. Clues: eqcomi 2746 eqtri 2765 subaddrii 11383 recni 11062 4re 12130 3re 12126 1re 11048 df-4 12111 addcomi 11239. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ (𝐴 + 3) = 4 ⇒ ⊢ 𝐴 = 1 | ||
Theorem | problem4 33731 | Practice problem 4. Clues: pm3.2i 471 eqcomi 2746 eqtri 2765 subaddrii 11383 recni 11062 7re 12139 6re 12136 ax-1cn 11002 df-7 12114 ax-mp 5 oveq1i 7325 3cn 12127 2cn 12121 df-3 12110 mulid2i 11053 subdiri 11498 mp3an 1460 mulcli 11055 subadd23 11306 oveq2i 7326 oveq12i 7327 3t2e6 12212 mulcomi 11056 subcli 11370 biimpri 227 subadd2i 11382. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 3 & ⊢ ((3 · 𝐴) + (2 · 𝐵)) = 7 ⇒ ⊢ (𝐴 = 1 ∧ 𝐵 = 2) | ||
Theorem | problem5 33732 | Practice problem 5. Clues: 3brtr3i 5116 mpbi 229 breqtri 5112 ltaddsubi 11609 remulcli 11064 2re 12120 3re 12126 9re 12145 eqcomi 2746 mvlladdi 11312 3cn 6cn 12137 eqtr3i 2767 6p3e9 12206 addcomi 11239 ltdiv1ii 11977 6re 12136 nngt0i 12085 2nn 12119 divcan3i 11794 recni 11062 2cn 12121 2ne0 12150 mpbir 230 eqtri 2765 mulcomi 11056 3t2e6 12212 divmuli 11802. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℝ & ⊢ ((2 · 𝐴) + 3) < 9 ⇒ ⊢ 𝐴 < 3 | ||
Theorem | quad3 33733 | Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.) |
⊢ 𝑋 ∈ ℂ & ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ⇒ ⊢ (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴))) | ||
Theorem | climuzcnv 33734* | Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.) |
⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) | ||
Theorem | sinccvglem 33735* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ∖ {0})) & ⊢ (𝜑 → 𝐹 ⇝ 0) & ⊢ 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) & ⊢ 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) < 1) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ⇝ 1) | ||
Theorem | sinccvg 33736* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) | ||
Theorem | circum 33737* | The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
⊢ 𝐴 = ((2 · π) / 𝑛) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) & ⊢ 𝑅 ∈ ℝ ⇒ ⊢ 𝑃 ⇝ ((2 · π) · 𝑅) | ||
Theorem | elfzm12 33738 | Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁))) | ||
Theorem | nn0seqcvg 33739* | A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Inference version. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ 𝐹:ℕ0⟶ℕ0 & ⊢ 𝑁 = (𝐹‘0) & ⊢ (𝑘 ∈ ℕ0 → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) ⇒ ⊢ (𝐹‘𝑁) = 0 | ||
Theorem | lediv2aALT 33740 | Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) | ||
Theorem | abs2sqlei 33741 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2)) | ||
Theorem | abs2sqlti 33742 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) | ||
Theorem | abs2sqle 33743 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))) | ||
Theorem | abs2sqlt 33744 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) | ||
Theorem | abs2difi 33745 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) | ||
Theorem | abs2difabsi 33746 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) | ||
Theorem | axextprim 33747 | ax-ext 2708 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) | ||
Theorem | axrepprim 33748 | ax-rep 5224 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧 ∈ 𝑥 → ¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧 ∈ 𝑥))) | ||
Theorem | axunprim 33749 | ax-un 7628 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axpowprim 33750 | ax-pow 5303 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) → 𝑥 = 𝑦) | ||
Theorem | axregprim 33751 | ax-reg 9421 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | axinfprim 33752 | ax-inf 9467 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ (𝑦 ∈ 𝑥 → ¬ ∀𝑦(𝑦 ∈ 𝑥 → ¬ ∀𝑧(𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥)))) | ||
Theorem | axacprim 33753 | ax-ac 10288 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) | ||
Theorem | untelirr 33754* | We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 33867). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | untuni 33755* | The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) | ||
Theorem | untsucf 33756* | If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
Theorem | unt0 33757 | The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 | ||
Theorem | untint 33758* | If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
Theorem | efrunt 33759* | If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) | ||
Theorem | untangtr 33760* | A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011.) |
⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦)) | ||
Theorem | 3jaodd 33761 | Double deduction form of 3jaoi 1426. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃 ∨ 𝜏) → 𝜂))) | ||
Theorem | 3orit 33762 | Closed form of 3ori 1423. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) | ||
Theorem | biimpexp 33763 | A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) | ||
Theorem | onelssex 33764* | Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐶 ↔ ∃𝑏 ∈ 𝐶 𝐴 ⊆ 𝑏)) | ||
Theorem | nepss 33765 | Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011.) |
⊢ (𝐴 ≠ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ∨ (𝐴 ∩ 𝐵) ⊊ 𝐵)) | ||
Theorem | 3ccased 33766 | Triple disjunction form of ccased 1036. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝜑 → ((𝜒 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜎) → 𝜓)) ⇒ ⊢ (𝜑 → (((𝜒 ∨ 𝜃 ∨ 𝜏) ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → 𝜓)) | ||
Theorem | dfso3 33767* | Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.) |
⊢ (𝑅 Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
Theorem | brtpid1 33768 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 | ||
Theorem | brtpid2 33769 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 | ||
Theorem | brtpid3 33770 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 | ||
Theorem | iota5f 33771* | A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
Theorem | dford5 33772 | A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) | ||
Theorem | jath 33773 | Closed form of ja 186. Proved using the completeness script. (Proof modification is discouraged.) (Contributed by Scott Fenton, 13-Dec-2021.) |
⊢ ((¬ 𝜑 → 𝜒) → ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → 𝜒))) | ||
Theorem | riotarab 33774* | Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) | ||
Theorem | reurab 33775* | Restricted existential uniqueness of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒 ↔ ∃!𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) | ||
Theorem | snres0 33776 | Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | ||
Theorem | fnssintima 33777* | Condition for subset of an intersection of an image. (Contributed by Scott Fenton, 16-Aug-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ⊆ ∩ (𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐵 𝐶 ⊆ (𝐹‘𝑥))) | ||
Theorem | xpab 33778* | Cross product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} × {𝑦 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | ralxpes 33779* | A version of ralxp 5770 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ (∀𝑥 ∈ (𝐴 × 𝐵)[(1st ‘𝑥) / 𝑦][(2nd ‘𝑥) / 𝑧]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜑) | ||
Theorem | ot2elxp 33780 | Ordered triple membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝐷 × 𝐸) × 𝐹) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) | ||
Theorem | ot21std 33781 | Extract the first member of an ordered triple. Deduction version. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝑋 = 〈〈𝐴, 𝐵〉, 𝐶〉 → (1st ‘(1st ‘𝑋)) = 𝐴) | ||
Theorem | ot22ndd 33782 | Extract the second member of an ordered triple. Deduction version. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝑋 = 〈〈𝐴, 𝐵〉, 𝐶〉 → (2nd ‘(1st ‘𝑋)) = 𝐵) | ||
Theorem | otthne 33783 | Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ≠ 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) | ||
Theorem | elxpxp 33784* | Membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | ||
Theorem | elxpxpss 33785* | Version of elrel 5727 for triple cross products. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | ||
Theorem | ralxp3f 33786* | Restricted for all over a triple cross product. (Contributed by Scott Fenton, 22-Aug-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) | ||
Theorem | ralxp3 33787* | Restricted for-all over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.) |
⊢ (𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | ||
Theorem | sbcoteq1a 33788 | Equality theorem for substitution of a class for an ordered triple. (Contributed by Scott Fenton, 22-Aug-2024.) |
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ([(1st ‘(1st ‘𝐴)) / 𝑥][(2nd ‘(1st ‘𝐴)) / 𝑦][(2nd ‘𝐴) / 𝑧]𝜑 ↔ 𝜑)) | ||
Theorem | ralxp3es 33789* | Restricted for-all over a triple cross product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.) |
⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) | ||
Theorem | onunel 33790 | The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) | ||
Theorem | imaeqsexv 33791* | Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | imaeqsalv 33792* | Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | nnuni 33793 | The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | ||
Theorem | sqdivzi 33794 | Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | supfz 33795 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
Theorem | inffz 33796 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
Theorem | fz0n 33797 | The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) | ||
Theorem | shftvalg 33798 | Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
Theorem | divcnvlin 33799* | Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | climlec3 33800* | Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |