| Metamath
Proof Explorer Theorem List (p. 338 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | constrrtcc 33701 | In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐶))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑃 = ((𝐵 − 𝐶) · (∗‘(𝐵 − 𝐶))) & ⊢ 𝑄 = ((𝐸 − 𝐹) · (∗‘(𝐸 − 𝐹))) & ⊢ 𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ 𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴))) ⇒ ⊢ (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0) | ||
| Theorem | isconstr 33702* | Property of being a constructible number. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) ⇒ ⊢ (𝐴 ∈ Constr ↔ ∃𝑚 ∈ ω 𝐴 ∈ (𝐶‘𝑚)) | ||
| Theorem | constr0 33703 | The first step of the construction of constructible numbers is the pair {0, 1}. In this theorem and the following, we use (𝐶‘𝑁) for the 𝑁-th intermediate iteration of the constructible number. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) ⇒ ⊢ (𝐶‘∅) = {0, 1} | ||
| Theorem | constrsuc 33704* | Membership in the successor step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ 𝑆 = (𝐶‘𝑁) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐶‘suc 𝑁) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑑 ∈ 𝑆 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑒 ∈ 𝑆 ∃𝑓 ∈ 𝑆 ∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑋 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑑 ∈ 𝑆 ∃𝑒 ∈ 𝑆 ∃𝑓 ∈ 𝑆 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))))) | ||
| Theorem | constrlim 33705* | Limit step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → Lim 𝑁) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) = ∪ 𝑛 ∈ 𝑁 (𝐶‘𝑛)) | ||
| Theorem | constrsscn 33706* | Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ ℂ) | ||
| Theorem | constrsslem 33707* | Lemma for constrss 33709. This lemma requires the additional condition that 0 is a constructible number; that condition is removed in constrss 33709. (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 0 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ (𝐶‘suc 𝑁)) | ||
| Theorem | constr01 33708* | 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) | ||
| Theorem | constrss 33709* | Constructed points are in the next generation constructed points. Lemma 7.3 of [Stewart] p. 91 (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ (𝐶‘suc 𝑁)) | ||
| Theorem | constrmon 33710* | The construction of constructible numbers is monotonous, i.e. if the ordinal 𝑀 is less than the ordinal 𝑁, which is denoted by 𝑀 ∈ 𝑁, then the 𝑀-th step of the constructible numbers is included in the 𝑁-th step. (Contributed by Thierry Arnoux, 1-Jul-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝐶‘𝑀) ⊆ (𝐶‘𝑁)) | ||
| Theorem | constrconj 33711* | If a point 𝑋 of the complex plane is constructible, so is its conjugate (∗‘𝑋). (Proposed by Saveliy Skresanov, 25-Jun-2025.) (Contributed by Thierry Arnoux, 1-Jul-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 𝑋 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (∗‘𝑋) ∈ (𝐶‘𝑁)) | ||
| Theorem | constrfin 33712* | Each step of the construction of constructible numbers is finite. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) | ||
| Theorem | constrelextdg2 33713* | If the 𝑁-th step (𝐶‘𝑁) of the construction of constuctible numbers is included in a subfield 𝐹 of the complex numbers, then any element 𝑋 of the next step (𝐶‘suc 𝑁) is either in 𝐹 or in a quadratic extension of 𝐹. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ 𝐾 = (ℂfld ↾s 𝐹) & ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (𝐹 ∪ {𝑋}))) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘ℂfld)) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → (𝐶‘𝑁) ⊆ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (𝐶‘suc 𝑁)) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) | ||
| Theorem | constrextdg2lem 33714* | Lemma for constrextdg2 33715 (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ 𝐸 = (ℂfld ↾s 𝑒) & ⊢ 𝐹 = (ℂfld ↾s 𝑓) & ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑅 ∈ ( < Chain(SubDRing‘ℂfld))) & ⊢ (𝜑 → (𝑅‘0) = ℚ) & ⊢ (𝜑 → (𝐶‘𝑁) ⊆ (lastS‘𝑅)) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))) | ||
| Theorem | constrextdg2 33715* | Any step (𝐶‘𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with ℚ. See Theorem 7.11 of [Stewart] p. 97. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ 𝐸 = (ℂfld ↾s 𝑒) & ⊢ 𝐹 = (ℂfld ↾s 𝑓) & ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) | ||
| Theorem | constrext2chnlem 33716* | Lemma for constrext2chn 33725. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ 𝐸 = (ℂfld ↾s 𝑒) & ⊢ 𝐹 = (ℂfld ↾s 𝑓) & ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) & ⊢ (𝜑 → 𝐴 ∈ Constr) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) | ||
| Theorem | constrfiss 33717* | For any finite set 𝐴 of constructible numbers, there is a 𝑛 -th step (𝐶‘𝑛) containing all numbers in 𝐴. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝐴 ⊆ Constr) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ω 𝐴 ⊆ (𝐶‘𝑛)) | ||
| Theorem | constrllcllem 33718* | Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝐴 ∈ Constr) & ⊢ (𝜑 → 𝐵 ∈ Constr) & ⊢ (𝜑 → 𝐺 ∈ Constr) & ⊢ (𝜑 → 𝐷 ∈ Constr) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → 𝑋 = (𝐺 + (𝑅 · (𝐷 − 𝐺)))) & ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐷 − 𝐺))) ≠ 0) ⇒ ⊢ (𝜑 → 𝑋 ∈ Constr) | ||
| Theorem | constrlccllem 33719* | Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝐴 ∈ Constr) & ⊢ (𝜑 → 𝐵 ∈ Constr) & ⊢ (𝜑 → 𝐺 ∈ Constr) & ⊢ (𝜑 → 𝐸 ∈ Constr) & ⊢ (𝜑 → 𝐹 ∈ Constr) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐺)) = (abs‘(𝐸 − 𝐹))) ⇒ ⊢ (𝜑 → 𝑋 ∈ Constr) | ||
| Theorem | constrcccllem 33720* | Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝐴 ∈ Constr) & ⊢ (𝜑 → 𝐵 ∈ Constr) & ⊢ (𝜑 → 𝐺 ∈ Constr) & ⊢ (𝜑 → 𝐷 ∈ Constr) & ⊢ (𝜑 → 𝐸 ∈ Constr) & ⊢ (𝜑 → 𝐹 ∈ Constr) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) ⇒ ⊢ (𝜑 → 𝑋 ∈ Constr) | ||
| Theorem | constrcbvlem 33721* | Technical lemma for eliminating the hypothesis of constr0 33703 and co. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙 − 𝑘))) ∧ (ℑ‘((∗‘(𝑗 − 𝑖)) · (𝑙 − 𝑘))) ≠ 0) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 ∃𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ (abs‘(𝑦 − 𝑘)) = (abs‘(𝑚 − 𝑞))) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 (𝑖 ≠ 𝑙 ∧ (abs‘(𝑦 − 𝑖)) = (abs‘(𝑗 − 𝑘)) ∧ (abs‘(𝑦 − 𝑙)) = (abs‘(𝑚 − 𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | ||
| Theorem | constrllcl 33722 | Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Constr) & ⊢ (𝜑 → 𝐵 ∈ Constr) & ⊢ (𝜑 → 𝐺 ∈ Constr) & ⊢ (𝜑 → 𝐷 ∈ Constr) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → 𝑋 = (𝐺 + (𝑅 · (𝐷 − 𝐺)))) & ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐷 − 𝐺))) ≠ 0) ⇒ ⊢ (𝜑 → 𝑋 ∈ Constr) | ||
| Theorem | constrlccl 33723 | Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Constr) & ⊢ (𝜑 → 𝐵 ∈ Constr) & ⊢ (𝜑 → 𝐺 ∈ Constr) & ⊢ (𝜑 → 𝐸 ∈ Constr) & ⊢ (𝜑 → 𝐹 ∈ Constr) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐺)) = (abs‘(𝐸 − 𝐹))) ⇒ ⊢ (𝜑 → 𝑋 ∈ Constr) | ||
| Theorem | constrcccl 33724 | Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Constr) & ⊢ (𝜑 → 𝐵 ∈ Constr) & ⊢ (𝜑 → 𝐶 ∈ Constr) & ⊢ (𝜑 → 𝐷 ∈ Constr) & ⊢ (𝜑 → 𝐸 ∈ Constr) & ⊢ (𝜑 → 𝐹 ∈ Constr) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐶))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) ⇒ ⊢ (𝜑 → 𝑋 ∈ Constr) | ||
| Theorem | constrext2chn 33725* | If a constructible number generates some subfield 𝐿 of ℂ, then the degree of the extension of 𝐿 over ℚ is a power of two. Theorem 7.12 of [Stewart] p. 98. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐿 = (ℂfld ↾s 𝑆) & ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) & ⊢ (𝜑 → 𝐴 ∈ Constr) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) | ||
| Theorem | constrcn 33726 | Constructible numbers are complex numbers. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) ⇒ ⊢ (𝜑 → 𝑋 ∈ ℂ) | ||
| Theorem | nn0constr 33727 | Nonnegative integers are constructible. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝑁 ∈ Constr) | ||
| Theorem | constraddcl 33728 | Constructive numbers are closed under complex addition. Item (1) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) & ⊢ (𝜑 → 𝑌 ∈ Constr) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ Constr) | ||
| Theorem | constrnegcl 33729 | Constructible numbers are closed under additive inverse. Item (2) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) ⇒ ⊢ (𝜑 → -𝑋 ∈ Constr) | ||
| Theorem | zconstr 33730 | Integers are constructible. (Contributed by Thierry Arnoux, 3-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑋 ∈ Constr) | ||
| Theorem | constrdircl 33731 | Constructible numbers are closed under taking the point on the unit circle having the same argument. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr) | ||
| Theorem | iconstr 33732 | The imaginary unit i is constructible. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ i ∈ Constr | ||
| Theorem | constrremulcl 33733 | If two real numbers 𝑋 and 𝑌 are constructible, then, so is their product. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) & ⊢ (𝜑 → 𝑌 ∈ Constr) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ Constr) | ||
| Theorem | constrcjcl 33734 | Constructible numbers are closed under complex conjugate. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) ⇒ ⊢ (𝜑 → (∗‘𝑋) ∈ Constr) | ||
| Theorem | constrrecl 33735 | Constructible numbers are closed under taking the real part. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) ⇒ ⊢ (𝜑 → (ℜ‘𝑋) ∈ Constr) | ||
| Theorem | constrimcl 33736 | Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) ⇒ ⊢ (𝜑 → (ℑ‘𝑋) ∈ Constr) | ||
| Theorem | constrmulcl 33737 | Constructible numbers are closed under complex multiplication. Item (3) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) & ⊢ (𝜑 → 𝑌 ∈ Constr) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ Constr) | ||
| Theorem | constrreinvcl 33738 | If a real number 𝑋 is constructible, then, so is its inverse. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → (1 / 𝑋) ∈ Constr) | ||
| Theorem | constrinvcl 33739 | Constructible numbers are closed under complex inverse. Item (4) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝑋) ∈ Constr) | ||
| Theorem | constrcon 33740* | Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over ℚ of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) & ⊢ 𝑀 = (ℂfld minPoly ℚ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) & ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) | ||
| Theorem | constrsdrg 33741 | Constructible numbers form a subfield of the complex numbers. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ Constr ∈ (SubDRing‘ℂfld) | ||
| Theorem | constrfld 33742 | The constructible numbers form a field. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (ℂfld ↾s Constr) ∈ Field | ||
| Theorem | constrresqrtcl 33743 | If a positive real number 𝑋 is constructible, then, so is its square root. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑋) ⇒ ⊢ (𝜑 → (√‘𝑋) ∈ Constr) | ||
| Theorem | constrabscl 33744 | Constructible numbers are closed under absolute value (modulus). (Contributed by Thierry Arnoux, 6-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) ⇒ ⊢ (𝜑 → (abs‘𝑋) ∈ Constr) | ||
| Theorem | constrsqrtcl 33745 | Constructible numbers are closed under taking the square root. This is not generally the case for the cubic root operation, see 2sqr3nconstr 33747. Item (5) of Theorem 7.10 of [Stewart] p. 96 (Proposed by Saveliy Skresanov, 3-Nov-2025.) (Contributed by Thierry Arnoux, 6-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ Constr) ⇒ ⊢ (𝜑 → (√‘𝑋) ∈ Constr) | ||
| Theorem | 2sqr3minply 33746 | The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over ℚ, and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ − = (-g‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑃 = (Poly1‘𝑄) & ⊢ 𝐾 = (algSc‘𝑃) & ⊢ 𝑋 = (var1‘𝑄) & ⊢ 𝐷 = (deg1‘𝑄) & ⊢ 𝐹 = ((3 ↑ 𝑋) − (𝐾‘2)) & ⊢ 𝐴 = (2↑𝑐(1 / 3)) & ⊢ 𝑀 = (ℂfld minPoly ℚ) ⇒ ⊢ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3) | ||
| Theorem | 2sqr3nconstr 33747 | Doubling the cube is an impossible construction, i.e. the cube root of 2 is not constructible with straightedge and compass. Given a cube of edge of length one, a cube of double volume would have an edge of length (2↑𝑐(1 / 3)), however that number is not constructible. This is the first part of Metamath 100 proof #8. Theorem 7.13 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 26-Oct-2025.) |
| ⊢ (2↑𝑐(1 / 3)) ∉ Constr | ||
| Theorem | cos9thpiminplylem1 33748 | The polynomial ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) has no integer roots. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ ℤ) ⇒ ⊢ (𝜑 → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0) | ||
| Theorem | cos9thpiminplylem2 33749 | The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) has no rational roots. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ ℚ) ⇒ ⊢ (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0) | ||
| Theorem | cos9thpiminplylem3 33750 | Lemma for cos9thpiminply 33754. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) ⇒ ⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 | ||
| Theorem | cos9thpiminplylem4 33751 | Lemma for cos9thpiminply 33754. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) & ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) ⇒ ⊢ ((𝑍↑6) + (𝑍↑3)) = -1 | ||
| Theorem | cos9thpiminplylem5 33752 | The constructed complex number 𝐴 is a root of the polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)). (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) & ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) & ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) ⇒ ⊢ ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0 | ||
| Theorem | cos9thpiminplylem6 33753 | Evaluation of the polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)). (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) & ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) & ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) & ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ + = (+g‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑃 = (Poly1‘𝑄) & ⊢ 𝐾 = (algSc‘𝑃) & ⊢ 𝑋 = (var1‘𝑄) & ⊢ 𝐷 = (deg1‘𝑄) & ⊢ 𝐹 = ((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) & ⊢ (𝜑 → 𝑌 ∈ ℂ) ⇒ ⊢ (𝜑 → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑌) = ((𝑌↑3) + ((-3 · 𝑌) + 1))) | ||
| Theorem | cos9thpiminply 33754 | The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) is the minimal polynomial for 𝐴 over ℚ, and its degree is 3. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) & ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) & ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) & ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ + = (+g‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑃 = (Poly1‘𝑄) & ⊢ 𝐾 = (algSc‘𝑃) & ⊢ 𝑋 = (var1‘𝑄) & ⊢ 𝐷 = (deg1‘𝑄) & ⊢ 𝐹 = ((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) & ⊢ 𝑀 = (ℂfld minPoly ℚ) ⇒ ⊢ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3) | ||
| Theorem | cos9thpinconstrlem1 33755 | The complex number 𝑂, representing an angle of (2 · π) / 3, is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) ⇒ ⊢ 𝑂 ∈ Constr | ||
| Theorem | cos9thpinconstrlem2 33756 | The complex number 𝐴 is not constructible. (Contributed by Thierry Arnoux, 15-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) & ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) & ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) ⇒ ⊢ ¬ 𝐴 ∈ Constr | ||
| Theorem | cos9thpinconstr 33757 | Trisecting an angle is an impossible construction. Given for example 𝑂 = (exp‘((i · (2 · π)) / 3)), which represents an angle of ((2 · π) / 3), the cube root of 𝑂 is not constructible with straightedge and compass, while 𝑂 itself is constructible. This is the second part of Metamath 100 proof #8. Theorem 7.14 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 15-Nov-2025.) |
| ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) & ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) ⇒ ⊢ (𝑂 ∈ Constr ∧ 𝑍 ∉ Constr) | ||
| Theorem | trisecnconstr 33758 | Not all angles can be trisected. (Contributed by Thierry Arnoux, 15-Nov-2025.) |
| ⊢ ¬ ∀𝑜 ∈ Constr (𝑜↑𝑐(1 / 3)) ∈ Constr | ||
| Syntax | csmat 33759 | Syntax for a function generating submatrices. |
| class subMat1 | ||
| Definition | df-smat 33760* | Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 22480. (Contributed by Thierry Arnoux, 18-Aug-2020.) |
| ⊢ subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) | ||
| Theorem | smatfval 33761* | Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) | ||
| Theorem | smatrcl 33762 | Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) ⇒ ⊢ (𝜑 → 𝑆 ∈ (𝐵 ↑m ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))) | ||
| Theorem | smatlem 33763 | Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋) & ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌)) | ||
| Theorem | smattl 33764 | Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽)) | ||
| Theorem | smattr 33765 | Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) | ||
| Theorem | smatbl 33766 | Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) | ||
| Theorem | smatbr 33767 | Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) | ||
| Theorem | smatcl 33768 | Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) & ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
| Theorem | matmpo 33769* | Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) | ||
| Theorem | 1smat1 33770 | The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 22486. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 1 = (1r‘((1...𝑁) Mat 𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))) | ||
| Theorem | submat1n 33771 | One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
| ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) | ||
| Theorem | submatres 33772 | Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
| ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | ||
| Theorem | submateqlem1 33773 | Lemma for submateq 33775. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) ⇒ ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) | ||
| Theorem | submateqlem2 33774 | Lemma for submateq 33775. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 < 𝐾) ⇒ ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) | ||
| Theorem | submateq 33775* | Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽)) | ||
| Theorem | submatminr1 33776 | If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) | ||
| Syntax | clmat 33777 | Extend class notation with the literal matrix conversion function. |
| class litMat | ||
| Definition | df-lmat 33778* | Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
| ⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
| Theorem | lmatval 33779* | Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
| ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
| Theorem | lmatfval 33780* | Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
| ⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) | ||
| Theorem | lmatfvlem 33781* | Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
| ⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ 𝐼 ≤ 𝑁 & ⊢ 𝐽 ≤ 𝑁 & ⊢ (𝐾 + 1) = 𝐼 & ⊢ (𝐿 + 1) = 𝐽 & ⊢ (𝑊‘𝐾) = 𝑋 & ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) | ||
| Theorem | lmatcl 33782* | Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
| ⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝑂 = ((1...𝑁) Mat 𝑅) & ⊢ 𝑃 = (Base‘𝑂) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑃) | ||
| Theorem | lmat22lem 33783* | Lemma for lmat22e11 33784 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
| ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) | ||
| Theorem | lmat22e11 33784 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
| ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀1) = 𝐴) | ||
| Theorem | lmat22e12 33785 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
| ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀2) = 𝐵) | ||
| Theorem | lmat22e21 33786 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
| ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀1) = 𝐶) | ||
| Theorem | lmat22e22 33787 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
| ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀2) = 𝐷) | ||
| Theorem | lmat22det 33788 | The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
| ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐽 = ((1...2) maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) | ||
| Theorem | mdetpmtr1 33789* | The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀𝑗)) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
| Theorem | mdetpmtr2 33790* | The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
| Theorem | mdetpmtr12 33791* | The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐷‘𝐸))) | ||
| Theorem | mdetlap1 33792* | A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (𝑁 maAdju 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) | ||
| Theorem | madjusmdetlem1 33793* | Lemma for madjusmdet 33797. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐺 = (Base‘(SymGrp‘(1...𝑁))) & ⊢ 𝑆 = (pmSgn‘(1...𝑁)) & ⊢ 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃‘𝑖)𝑈(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) & ⊢ (𝜑 → (𝑃‘𝑁) = 𝐼) & ⊢ (𝜑 → (𝑄‘𝑁) = 𝐽) & ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
| Theorem | madjusmdetlem2 33794* | Lemma for madjusmdet 33797. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑋)) | ||
| Theorem | madjusmdetlem3 33795* | Lemma for madjusmdet 33797. (Contributed by Thierry Arnoux, 27-Aug-2020.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) | ||
| Theorem | madjusmdetlem4 33796* | Lemma for madjusmdet 33797. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
| Theorem | madjusmdet 33797 | Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
| Theorem | mdetlap 33798* | Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) | ||
| Theorem | ist0cld 33799* | The predicate "is a T0 space", using closed sets. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
| ⊢ (𝜑 → 𝐵 = ∪ 𝐽) & ⊢ (𝜑 → 𝐷 = (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∀𝑑 ∈ 𝐷 (𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦)))) | ||
| Theorem | txomap 33800* | Given two open maps 𝐹 and 𝐺, 𝐻 mapping pairs of sets, is also an open map for the product topology. (Contributed by Thierry Arnoux, 29-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶𝑍) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑇) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑇)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐿) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 “ 𝑦) ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ (𝐽 ×t 𝐾)) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ⇒ ⊢ (𝜑 → (𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |