HomeHome Metamath Proof Explorer
Theorem List (p. 338 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 33701-33800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremssttrcl 33701 If 𝑅 is a relation, then it is a subclass of its transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
(Rel 𝑅𝑅 ⊆ t++𝑅)
 
Theoremttrcltr 33702 The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024.)
(t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
 
Theoremttrclresv 33703 The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.)
t++(𝑅 ↾ V) = t++𝑅
 
Theoremttrclco 33704 Composition law for the transitive closure of a relationship. (Contributed by Scott Fenton, 20-Oct-2024.)
(t++𝑅𝑅) ⊆ t++𝑅
 
Theoremcottrcl 33705 Composition law for the transitive closure of a relationship. (Contributed by Scott Fenton, 20-Oct-2024.)
(𝑅 ∘ t++𝑅) ⊆ t++𝑅
 
Theoremttrclss 33706 If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.)
((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)
 
Theoremdmttrcl 33707 The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024.)
dom t++𝑅 = dom 𝑅
 
Theoremrnttrcl 33708 The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024.)
ran t++𝑅 = ran 𝑅
 
Theoremttrclexg 33709 If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.)
(𝑅𝑉 → t++𝑅 ∈ V)
 
Theoremdfttrcl2 33710* When 𝑅 is a set and a relationship, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.)
((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
 
Theoremttrclselem1 33711* Lemma for ttrclse 33713. Show that all finite ordinal function values of 𝐹 are subsets of 𝐴. (Contributed by Scott Fenton, 31-Oct-2024.)
𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))       (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
 
Theoremttrclselem2 33712* Lemma for ttrclse 33713. Show that a suc 𝑁 element long chain gives membership in the 𝑁-th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024.)
𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))       ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))
 
Theoremttrclse 33713 If 𝑅 is set-like over 𝐴, then the transitive closure of the restriction of 𝑅 to 𝐴 is set-like over 𝐴.

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.)

(𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
 
20.9.17  Well-Founded Induction
 
Theoremfrpoins3xpg 33714* Special case of founded partial induction over a cross product. (Contributed by Scott Fenton, 22-Aug-2024.)
((𝑥𝐴𝑦𝐵) → (∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ Pred(𝑅, (𝐴 × 𝐵), ⟨𝑥, 𝑦⟩) → 𝜒) → 𝜑))    &   (𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑤 → (𝜓𝜒))    &   (𝑥 = 𝑋 → (𝜑𝜃))    &   (𝑦 = 𝑌 → (𝜃𝜏))       (((𝑅 Fr (𝐴 × 𝐵) ∧ 𝑅 Po (𝐴 × 𝐵) ∧ 𝑅 Se (𝐴 × 𝐵)) ∧ (𝑋𝐴𝑌𝐵)) → 𝜏)
 
Theoremfrpoins3xp3g 33715* Special case of founded partial recursion over a triple cross product. (Contributed by Scott Fenton, 22-Aug-2024.)
((𝑥𝐴𝑦𝐵𝑧𝐶) → (∀𝑤𝑡𝑢(⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ∈ Pred(𝑅, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) → 𝜃) → 𝜑))    &   (𝑥 = 𝑤 → (𝜑𝜓))    &   (𝑦 = 𝑡 → (𝜓𝜒))    &   (𝑧 = 𝑢 → (𝜒𝜃))    &   (𝑥 = 𝑋 → (𝜑𝜏))    &   (𝑦 = 𝑌 → (𝜏𝜂))    &   (𝑧 = 𝑍 → (𝜂𝜁))       (((𝑅 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑅 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑅 Se ((𝐴 × 𝐵) × 𝐶)) ∧ (𝑋𝐴𝑌𝐵𝑍𝐶)) → 𝜁)
 
20.9.18  Ordering Cross Products, Part 2
 
Theoremxpord2lem 33716* Lemma for cross product ordering. Calculate the value of the cross product relationship. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵) ∧ ((𝑎𝑅𝑐𝑎 = 𝑐) ∧ (𝑏𝑆𝑑𝑏 = 𝑑) ∧ (𝑎𝑐𝑏𝑑))))
 
Theorempoxp2 33717* Another way of partially ordering a cross product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Po 𝐴)    &   (𝜑𝑆 Po 𝐵)       (𝜑𝑇 Po (𝐴 × 𝐵))
 
Theoremfrxp2 33718* Another way of giving a founded order to a cross product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Fr 𝐴)    &   (𝜑𝑆 Fr 𝐵)       (𝜑𝑇 Fr (𝐴 × 𝐵))
 
Theoremxpord2pred 33719* Calculate the predecessor class in frxp2 33718. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       ((𝑋𝐴𝑌𝐵) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑋, 𝑌⟩) = (((Pred(𝑅, 𝐴, 𝑋) ∪ {𝑋}) × (Pred(𝑆, 𝐵, 𝑌) ∪ {𝑌})) ∖ {⟨𝑋, 𝑌⟩}))
 
Theoremsexp2 33720* Condition for the relationship in frxp2 33718 to be set-like. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Se 𝐴)    &   (𝜑𝑆 Se 𝐵)       (𝜑𝑇 Se (𝐴 × 𝐵))
 
Theoremxpord2ind 33721* Induction over the cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   𝑅 Fr 𝐴    &   𝑅 Po 𝐴    &   𝑅 Se 𝐴    &   𝑆 Fr 𝐵    &   𝑆 Po 𝐵    &   𝑆 Se 𝐵    &   (𝑎 = 𝑐 → (𝜑𝜓))    &   (𝑏 = 𝑑 → (𝜓𝜒))    &   (𝑎 = 𝑐 → (𝜃𝜒))    &   (𝑎 = 𝑋 → (𝜑𝜏))    &   (𝑏 = 𝑌 → (𝜏𝜂))    &   ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))       ((𝑋𝐴𝑌𝐵) → 𝜂)
 
Theoremxpord3lem 33722* Lemma for triple ordering. Calculate the value of the relationship. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}       (⟨⟨𝑎, 𝑏⟩, 𝑐𝑈⟨⟨𝑑, 𝑒⟩, 𝑓⟩ ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓))))
 
Theorempoxp3 33723* Triple cross product partial ordering. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Po 𝐴)    &   (𝜑𝑆 Po 𝐵)    &   (𝜑𝑇 Po 𝐶)       (𝜑𝑈 Po ((𝐴 × 𝐵) × 𝐶))
 
Theoremfrxp3 33724* Give foundedness over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Fr 𝐴)    &   (𝜑𝑆 Fr 𝐵)    &   (𝜑𝑇 Fr 𝐶)       (𝜑𝑈 Fr ((𝐴 × 𝐵) × 𝐶))
 
Theoremxpord3pred 33725* Calculate the predecsessor class for the triple order. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}       ((𝑋𝐴𝑌𝐵𝑍𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑋, 𝑌⟩, 𝑍⟩) = ((((Pred(𝑅, 𝐴, 𝑋) ∪ {𝑋}) × (Pred(𝑆, 𝐵, 𝑌) ∪ {𝑌})) × (Pred(𝑇, 𝐶, 𝑍) ∪ {𝑍})) ∖ {⟨⟨𝑋, 𝑌⟩, 𝑍⟩}))
 
Theoremsexp3 33726* Show that the triple order is set-like. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Se 𝐴)    &   (𝜑𝑆 Se 𝐵)    &   (𝜑𝑇 Se 𝐶)       (𝜑𝑈 Se ((𝐴 × 𝐵) × 𝐶))
 
Theoremxpord3ind 33727* Induction over the triple cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   𝑅 Fr 𝐴    &   𝑅 Po 𝐴    &   𝑅 Se 𝐴    &   𝑆 Fr 𝐵    &   𝑆 Po 𝐵    &   𝑆 Se 𝐵    &   𝑇 Fr 𝐶    &   𝑇 Po 𝐶    &   𝑇 Se 𝐶    &   (𝑎 = 𝑑 → (𝜑𝜓))    &   (𝑏 = 𝑒 → (𝜓𝜒))    &   (𝑐 = 𝑓 → (𝜒𝜃))    &   (𝑎 = 𝑑 → (𝜏𝜃))    &   (𝑏 = 𝑒 → (𝜂𝜏))    &   (𝑏 = 𝑒 → (𝜁𝜃))    &   (𝑐 = 𝑓 → (𝜎𝜏))    &   (𝑎 = 𝑋 → (𝜑𝜌))    &   (𝑏 = 𝑌 → (𝜌𝜇))    &   (𝑐 = 𝑍 → (𝜇𝜆))    &   ((𝑎𝐴𝑏𝐵𝑐𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))       ((𝑋𝐴𝑌𝐵𝑍𝐶) → 𝜆)
 
20.9.19  Ordering Ordinal Sequences
 
Theoremorderseqlem 33728* Lemma for poseq 33729 and soseq 33730. The function value of a sequene is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.)
𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}       (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
 
Theoremposeq 33729* A partial ordering of sequences of ordinals. (Contributed by Scott Fenton, 8-Jun-2011.)
𝑅 Po (𝐴 ∪ {∅})    &   𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}    &   𝑆 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐹𝑔𝐹) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥)𝑅(𝑔𝑥)))}       𝑆 Po 𝐹
 
Theoremsoseq 33730* A linear ordering of sequences of ordinals. (Contributed by Scott Fenton, 8-Jun-2011.)
𝑅 Or (𝐴 ∪ {∅})    &   𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}    &   𝑆 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐹𝑔𝐹) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥)𝑅(𝑔𝑥)))}    &    ¬ ∅ ∈ 𝐴       𝑆 Or 𝐹
 
20.9.20  Well-founded zero, successor, and limits
 
Syntaxcwsuc 33731 Declare the syntax for well-founded successor.
class wsuc(𝑅, 𝐴, 𝑋)
 
Syntaxcwlim 33732 Declare the syntax for well-founded limit class.
class WLim(𝑅, 𝐴)
 
Definitiondf-wsuc 33733 Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.)
wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
 
Definitiondf-wlim 33734* Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.)
WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
 
Theoremwsuceq123 33735 Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))
 
Theoremwsuceq1 33736 Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋))
 
Theoremwsuceq2 33737 Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋))
 
Theoremwsuceq3 33738 Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌))
 
Theoremnfwsuc 33739 Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
𝑥𝑅    &   𝑥𝐴    &   𝑥𝑋       𝑥wsuc(𝑅, 𝐴, 𝑋)
 
Theoremwlimeq12 33740 Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
((𝑅 = 𝑆𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵))
 
Theoremwlimeq1 33741 Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.)
(𝑅 = 𝑆 → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐴))
 
Theoremwlimeq2 33742 Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.)
(𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵))
 
Theoremnfwlim 33743 Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
𝑥𝑅    &   𝑥𝐴       𝑥WLim(𝑅, 𝐴)
 
Theoremelwlim 33744 Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.)
(𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
 
Theoremwzel 33745 The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.)
((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)
 
Theoremwsuclem 33746* Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.)
(𝜑𝑅 We 𝐴)    &   (𝜑𝑅 Se 𝐴)    &   (𝜑𝑋𝑉)    &   (𝜑 → ∃𝑤𝐴 𝑋𝑅𝑤)       (𝜑 → ∃𝑥𝐴 (∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)))
 
Theoremwsucex 33747 Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
(𝜑𝑅 Or 𝐴)       (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)
 
Theoremwsuccl 33748* If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
(𝜑𝑅 We 𝐴)    &   (𝜑𝑅 Se 𝐴)    &   (𝜑𝑋𝑉)    &   (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)       (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴)
 
Theoremwsuclb 33749 A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
(𝜑𝑅 We 𝐴)    &   (𝜑𝑅 Se 𝐴)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝐴)    &   (𝜑𝑋𝑅𝑌)       (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))
 
Theoremwlimss 33750 The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.)
WLim(𝑅, 𝐴) ⊆ 𝐴
 
20.9.21  Natural operations on ordinals
 
Syntaxcnadd 33751 Declare the syntax for natural ordinal addition. See df-nadd 33752.
class +no
 
Definitiondf-nadd 33752* Define natural ordinal addition. This is a commutative form of addition over the ordinals. (Contributed by Scott Fenton, 26-Aug-2024.)
+no = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st𝑧)} × (2nd𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st𝑧) × {(2nd𝑧)})) ⊆ 𝑤)}))
 
Theoremon2recsfn 33753* Show that double recursion over ordinals yields a function over pairs of ordinals. (Contributed by Scott Fenton, 3-Sep-2024.)
𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)       𝐹 Fn (On × On)
 
Theoremon2recsov 33754* Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.)
𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)       ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
 
Theoremon2ind 33755* Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.)
(𝑎 = 𝑐 → (𝜑𝜓))    &   (𝑏 = 𝑑 → (𝜓𝜒))    &   (𝑎 = 𝑐 → (𝜃𝜒))    &   (𝑎 = 𝑋 → (𝜑𝜏))    &   (𝑏 = 𝑌 → (𝜏𝜂))    &   ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃) → 𝜑))       ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂)
 
Theoremon3ind 33756* Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024.)
(𝑎 = 𝑑 → (𝜑𝜓))    &   (𝑏 = 𝑒 → (𝜓𝜒))    &   (𝑐 = 𝑓 → (𝜒𝜃))    &   (𝑎 = 𝑑 → (𝜏𝜃))    &   (𝑏 = 𝑒 → (𝜂𝜏))    &   (𝑏 = 𝑒 → (𝜁𝜃))    &   (𝑐 = 𝑓 → (𝜎𝜏))    &   (𝑎 = 𝑋 → (𝜑𝜌))    &   (𝑏 = 𝑌 → (𝜌𝜇))    &   (𝑐 = 𝑍 → (𝜇𝜆))    &   ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁) ∧ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎) ∧ ∀𝑓𝑐 𝜂) → 𝜑))       ((𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On) → 𝜆)
 
Theoremnaddfn 33757 Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.)
+no Fn (On × On)
 
Theoremnaddcllem 33758* Lemma for ordinal addition closure. (Contributed by Scott Fenton, 26-Aug-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
 
Theoremnaddcl 33759 Closure law for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)
 
Theoremnaddov 33760* The value of natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
 
Theoremnaddov2 33761* Alternate expression for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
 
Theoremnaddcom 33762 Natural addition commutes. (Contributed by Scott Fenton, 26-Aug-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴))
 
Theoremnaddid1 33763 Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
(𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
 
Theoremnaddssim 33764 Ordinal less-than-or-equal is preserved by natural addition. (Contributed by Scott Fenton, 7-Sep-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))
 
Theoremnaddelim 33765 Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
 
Theoremnaddel1 33766 Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
 
Theoremnaddel2 33767 Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +no 𝐴) ∈ (𝐶 +no 𝐵)))
 
Theoremnaddss1 33768 Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶)))
 
Theoremnaddss2 33769 Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +no 𝐴) ⊆ (𝐶 +no 𝐵)))
 
20.9.22  Surreal Numbers
 
Syntaxcsur 33770 Declare the class of all surreal numbers (see df-no 33773).
class No
 
Syntaxcslt 33771 Declare the less than relationship over surreal numbers (see df-slt 33774).
class <s
 
Syntaxcbday 33772 Declare the birthday function for surreal numbers (see df-bday 33775).
class bday
 
Definitiondf-no 33773* Define the class of surreal numbers. The surreal numbers are a proper class of numbers developed by John H. Conway and introduced by Donald Knuth in 1975. They form a proper class into which all ordered fields can be embedded. The approach we take to defining them was first introduced by Hary Gonshor, and is based on the conception of a "sign expansion" of a surreal number. We define the surreals as ordinal-indexed sequences of 1o and 2o, analagous to Gonshor's ( − ) and ( + ).

After introducing this definition, we will abstract away from it using axioms that Norman Alling developed in "Foundations of Analysis over Surreal Number Fields." This is done in an effort to be agnostic towards the exact implementation of surreals. (Contributed by Scott Fenton, 9-Jun-2011.)

No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}}
 
Definitiondf-slt 33774* Next, we introduce surreal less-than, a comparison relationship over the surreals by lexicographically ordering them. (Contributed by Scott Fenton, 9-Jun-2011.)
<s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
 
Definitiondf-bday 33775 Finally, we introduce the birthday function. This function maps each surreal to an ordinal. In our implementation, this is the domain of the sign function. The important properties of this function are established later. (Contributed by Scott Fenton, 11-Jun-2011.)
bday = (𝑥 No ↦ dom 𝑥)
 
Theoremelno 33776* Membership in the surreals. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.)
(𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
 
Theoremsltval 33777* The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011.)
((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
 
Theorembdayval 33778 The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.)
(𝐴 No → ( bday 𝐴) = dom 𝐴)
 
Theoremnofun 33779 A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.)
(𝐴 No → Fun 𝐴)
 
Theoremnodmon 33780 The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.)
(𝐴 No → dom 𝐴 ∈ On)
 
Theoremnorn 33781 The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.)
(𝐴 No → ran 𝐴 ⊆ {1o, 2o})
 
Theoremnofnbday 33782 A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
(𝐴 No 𝐴 Fn ( bday 𝐴))
 
Theoremnodmord 33783 The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.)
(𝐴 No → Ord dom 𝐴)
 
Theoremelno2 33784 An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.)
(𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
 
Theoremelno3 33785 Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.)
(𝐴 No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On))
 
Theoremsltval2 33786* Alternate expression for surreal less than. Two surreals obey surreal less than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011.)
((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
 
Theoremnofv 33787 The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.)
(𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
 
Theoremnosgnn0 33788 is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.)
¬ ∅ ∈ {1o, 2o}
 
Theoremnosgnn0i 33789 If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.)
𝑋 ∈ {1o, 2o}       ∅ ≠ 𝑋
 
Theoremnoreson 33790 The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.)
((𝐴 No 𝐵 ∈ On) → (𝐴𝐵) ∈ No )
 
Theoremsltintdifex 33791* If 𝐴 <s 𝐵, then the intersection of all the ordinals that have differing signs in 𝐴 and 𝐵 exists. (Contributed by Scott Fenton, 22-Feb-2012.)
((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ V))
 
Theoremsltres 33792 If the restrictions of two surreals to a given ordinal obey surreal less than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.)
((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))
 
Theoremnoxp1o 33793 The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.)
(𝐴 ∈ On → (𝐴 × {1o}) ∈ No )
 
Theoremnoseponlem 33794* Lemma for nosepon 33795. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.)
((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
 
Theoremnosepon 33795* Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.)
((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
 
Theoremnoextend 33796 Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
𝑋 ∈ {1o, 2o}       (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 𝑋⟩}) ∈ No )
 
Theoremnoextendseq 33797 Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.)
𝑋 ∈ {1o, 2o}       ((𝐴 No 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No )
 
Theoremnoextenddif 33798* Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.)
𝑋 ∈ {1o, 2o}       (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
 
Theoremnoextendlt 33799 Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
(𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)
 
Theoremnoextendgt 33800 Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
(𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >