HomeHome Metamath Proof Explorer
Theorem List (p. 338 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44900)
 

Theorem List for Metamath Proof Explorer - 33701-33800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrefssfne 33701* A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
 
20.10.5  Neighborhood bases determine topologies
 
Theoremneibastop1 33702* A collection of neighborhood bases determines a topology. Part of Theorem 4.5 of Stephen Willard's General Topology. (Contributed by Jeff Hankins, 8-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}       (𝜑𝐽 ∈ (TopOn‘𝑋))
 
Theoremneibastop2lem 33703* Lemma for neibastop2 33704. (Contributed by Jeff Hankins, 12-Sep-2009.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)    &   (𝜑𝑃𝑋)    &   (𝜑𝑁𝑋)    &   (𝜑𝑈 ∈ (𝐹𝑃))    &   (𝜑𝑈𝑁)    &   𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)    &   𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}       (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
 
Theoremneibastop2 33704* In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)       ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
 
Theoremneibastop3 33705* The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)       (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
 
20.10.6  Lattice structure of topologies
 
Theoremtopmtcl 33706 The meet of a collection of topologies on 𝑋 is again a topology on 𝑋. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
 
Theoremtopmeet 33707* Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
 
Theoremtopjoin 33708* Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
 
Theoremfnemeet1 33709* The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝐴)
 
Theoremfnemeet2 33710* The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
 
Theoremfnejoin1 33711* Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
 
Theoremfnejoin2 33712* Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
 
20.10.7  Filter bases
 
Theoremfgmin 33713 Minimality property of a generated filter: every filter that contains 𝐵 contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))
 
Theoremneifg 33714* The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 22444. (Contributed by Jeff Hankins, 3-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
 
20.10.8  Directed sets, nets
 
Theoremtailfval 33715* The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
 
Theoremtailval 33716 The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))
 
Theoremeltail 33717 An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))
 
Theoremtailf 33718 The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
 
Theoremtailini 33719 A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴))
 
Theoremtailfb 33720 The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))
 
Theoremfilnetlem1 33721* Lemma for filnet 33725. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)    &   𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}    &   𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
 
Theoremfilnetlem2 33722* Lemma for filnet 33725. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)    &   𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}       (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
 
Theoremfilnetlem3 33723* Lemma for filnet 33725. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)    &   𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}       (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
 
Theoremfilnetlem4 33724* Lemma for filnet 33725. (Contributed by Jeff Hankins, 15-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)    &   𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}       (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
 
Theoremfilnet 33725* A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
(𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
 
20.11  Mathbox for Anthony Hart
 
20.11.1  Propositional Calculus
 
Theoremtb-ax1 33726 The first of three axioms in the Tarski-Bernays axiom system. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremtb-ax2 33727 The second of three axioms in the Tarski-Bernays axiom system. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜑))
 
Theoremtb-ax3 33728 The third of three axioms in the Tarski-Bernays axiom system.

This axiom, along with ax-mp 5, tb-ax1 33726, and tb-ax2 33727, can be used to derive any theorem or rule that uses only . (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

(((𝜑𝜓) → 𝜑) → 𝜑)
 
Theoremtbsyl 33729 The weak syllogism from Tarski-Bernays'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜓𝜒)       (𝜑𝜒)
 
Theoremre1ax2lem 33730 Lemma for re1ax2 33731. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
 
Theoremre1ax2 33731 ax-2 7 rederived from the Tarski-Bernays axiom system. Often tb-ax1 33726 is replaced with this theorem to make a "standard" system. This is because this theorem is easier to work with, despite it being longer. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
 
Theoremnaim1 33732 Constructor theorem for . (Contributed by Anthony Hart, 1-Sep-2011.)
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremnaim2 33733 Constructor theorem for . (Contributed by Anthony Hart, 1-Sep-2011.)
((𝜑𝜓) → ((𝜒𝜓) → (𝜒𝜑)))
 
Theoremnaim1i 33734 Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
(𝜑𝜓)    &   (𝜓𝜒)       (𝜑𝜒)
 
Theoremnaim2i 33735 Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
(𝜑𝜓)    &   (𝜒𝜓)       (𝜒𝜑)
 
Theoremnaim12i 33736 Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
(𝜑𝜓)    &   (𝜒𝜃)    &   (𝜓𝜃)       (𝜑𝜒)
 
Theoremnabi1i 33737 Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
(𝜑𝜓)    &   (𝜓𝜒)       (𝜑𝜒)
 
Theoremnabi2i 33738 Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
(𝜑𝜓)    &   (𝜒𝜓)       (𝜒𝜑)
 
Theoremnabi12i 33739 Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
(𝜑𝜓)    &   (𝜒𝜃)    &   (𝜓𝜃)       (𝜑𝜒)
 
Syntaxw3nand 33740 The double nand.
wff (𝜑𝜓𝜒)
 
Definitiondf-3nand 33741 The double nand. This definition allows us to express the input of three variables only being false if all three are true. (Contributed by Anthony Hart, 2-Sep-2011.)
((𝜑𝜓𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒)))
 
Theoremdf3nandALT1 33742 The double nand expressed in terms of pure nand. (Contributed by Anthony Hart, 2-Sep-2011.)
((𝜑𝜓𝜒) ↔ (𝜑 ⊼ ((𝜓𝜒) ⊼ (𝜓𝜒))))
 
Theoremdf3nandALT2 33743 The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011.)
((𝜑𝜓𝜒) ↔ ¬ (𝜑𝜓𝜒))
 
Theoremandnand1 33744 Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜓𝜒) ⊼ (𝜑𝜓𝜒)))
 
Theoremimnand2 33745 An nand relation. (Contributed by Anthony Hart, 2-Sep-2011.)
((¬ 𝜑𝜓) ↔ ((𝜑𝜑) ⊼ (𝜓𝜓)))
 
20.11.2  Predicate Calculus
 
Theoremnalfal 33746 Not all sets hold as true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∀𝑥
 
Theoremnexntru 33747 There does not exist a set such that is not true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃𝑥 ¬ ⊤
 
Theoremnexfal 33748 There does not exist a set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃𝑥
 
Theoremneufal 33749 There does not exist exactly one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃!𝑥
 
Theoremneutru 33750 There does not exist exactly one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃!𝑥
 
Theoremnmotru 33751 There does not exist at most one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃*𝑥
 
Theoremmofal 33752 There exist at most one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
∃*𝑥
 
Theoremnrmo 33753 "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023.)
(𝑥𝐴 → ¬ 𝜑)       ∃*𝑥𝐴 𝜑
 
20.11.3  Miscellaneous single axioms
 
Theoremmeran1 33754 A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
(¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜃𝜑) ∨ (𝜒 ∨ (𝜏𝜑))))
 
Theoremmeran2 33755 A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
(¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜏𝜃) ∨ (𝜒 ∨ (𝜑𝜃))))
 
Theoremmeran3 33756 A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
(¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜒𝜑) ∨ (𝜏 ∨ (𝜃𝜑))))
 
Theoremwaj-ax 33757 A single axiom for propositional calculus discovered by Mordchaj Wajsberg (Logical Works, Polish Academy of Sciences, 1977). See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom W on slide 8). (Contributed by Anthony Hart, 13-Aug-2011.)
((𝜑 ⊼ (𝜓𝜒)) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜑 ⊼ (𝜑𝜓))))
 
Theoremlukshef-ax2 33758 A single axiom for propositional calculus discovered by Jan Lukasiewicz. See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom L2 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011.)
((𝜑 ⊼ (𝜓𝜒)) ⊼ ((𝜑 ⊼ (𝜒𝜑)) ⊼ ((𝜃𝜓) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))
 
Theoremarg-ax 33759 A single axiom for propositional calculus discovered by Ken Harris and Branden Fitelson. See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom HF1 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011.)
((𝜑 ⊼ (𝜓𝜒)) ⊼ ((𝜑 ⊼ (𝜓𝜒)) ⊼ ((𝜃𝜒) ⊼ ((𝜒𝜃) ⊼ (𝜑𝜃)))))
 
20.11.4  Connective Symmetry
 
Theoremnegsym1 33760 In the paper "On Variable Functors of Propositional Arguments", Lukasiewicz introduced a system that can handle variable connectives. This was done by introducing a variable, marked with a lowercase delta, which takes a wff as input. In the system, "delta 𝜑 " means that "something is true of 𝜑". The expression "delta 𝜑 " can be substituted with ¬ 𝜑, 𝜓𝜑, 𝑥𝜑, etc.

Later on, Meredith discovered a single axiom, in the form of ( delta delta ⊥ → delta 𝜑 ). This represents the shortest theorem in the extended propositional calculus that cannot be derived as an instance of a theorem in propositional calculus.

A symmetry with ¬. (Contributed by Anthony Hart, 4-Sep-2011.)

(¬ ¬ ⊥ → ¬ 𝜑)
 
Theoremimsym1 33761 A symmetry with .

See negsym1 33760 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 → (𝜓 → ⊥)) → (𝜓𝜑))
 
Theorembisym1 33762 A symmetry with .

See negsym1 33760 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ↔ (𝜓 ↔ ⊥)) → (𝜓𝜑))
 
Theoremconsym1 33763 A symmetry with .

See negsym1 33760 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ∧ (𝜓 ∧ ⊥)) → (𝜓𝜑))
 
Theoremdissym1 33764 A symmetry with .

See negsym1 33760 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ∨ (𝜓 ∨ ⊥)) → (𝜓𝜑))
 
Theoremnandsym1 33765 A symmetry with .

See negsym1 33760 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ⊼ (𝜓 ⊼ ⊥)) → (𝜓𝜑))
 
Theoremunisym1 33766 A symmetry with .

See negsym1 33760 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)

(∀𝑥𝑥⊥ → ∀𝑥𝜑)
 
Theoremexisym1 33767 A symmetry with .

See negsym1 33760 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

(∃𝑥𝑥⊥ → ∃𝑥𝜑)
 
Theoremunqsym1 33768 A symmetry with ∃!.

See negsym1 33760 for more information. (Contributed by Anthony Hart, 6-Sep-2011.)

(∃!𝑥∃!𝑥⊥ → ∃!𝑥𝜑)
 
Theoremamosym1 33769 A symmetry with ∃*.

See negsym1 33760 for more information. (Contributed by Anthony Hart, 13-Sep-2011.)

(∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
 
Theoremsubsym1 33770 A symmetry with [𝑥 / 𝑦].

See negsym1 33760 for more information. (Contributed by Anthony Hart, 11-Sep-2011.)

([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑)
 
20.12  Mathbox for Chen-Pang He
 
20.12.1  Ordinal topology
 
Theoremontopbas 33771 An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
(𝐵 ∈ On → 𝐵 ∈ TopBases)
 
Theoremonsstopbas 33772 The class of ordinal numbers is a subclass of the class of topological bases. (Contributed by Chen-Pang He, 8-Oct-2015.)
On ⊆ TopBases
 
Theoremonpsstopbas 33773 The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.)
On ⊊ TopBases
 
Theoremontgval 33774 The topology generated from an ordinal number 𝐵 is suc 𝐵. (Contributed by Chen-Pang He, 10-Oct-2015.)
(𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)
 
Theoremontgsucval 33775 The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.)
(𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴)
 
Theoremonsuctop 33776 A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ Top)
 
Theoremonsuctopon 33777 One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
 
Theoremordtoplem 33778 Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.)
( 𝐴 ∈ On → suc 𝐴𝑆)       (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))
 
Theoremordtop 33779 An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.)
(Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
 
Theoremonsucconni 33780 A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
𝐴 ∈ On       suc 𝐴 ∈ Conn
 
Theoremonsucconn 33781 A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ Conn)
 
Theoremordtopconn 33782 An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.)
(Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))
 
Theoremonintopssconn 33783 An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.)
(On ∩ Top) ⊆ Conn
 
Theoremonsuct0 33784 A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ Kol2)
 
Theoremordtopt0 33785 An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.)
(Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2))
 
Theoremonsucsuccmpi 33786 The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015.)
𝐴 ∈ On       suc suc 𝐴 ∈ Comp
 
Theoremonsucsuccmp 33787 The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.)
(𝐴 ∈ On → suc suc 𝐴 ∈ Comp)
 
Theoremlimsucncmpi 33788 The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Lim 𝐴        ¬ suc 𝐴 ∈ Comp
 
Theoremlimsucncmp 33789 The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
(Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)
 
Theoremordcmp 33790 An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o. (Contributed by Chen-Pang He, 1-Nov-2015.)
(Ord 𝐴 → (𝐴 ∈ Comp ↔ ( 𝐴 = 𝐴𝐴 = 1o)))
 
Theoremssoninhaus 33791 The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.)
{1o, 2o} ⊆ (On ∩ Haus)
 
Theoremonint1 33792 The ordinal T1 spaces are 1o and 2o, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 9-Nov-2015.)
(On ∩ Fre) = {1o, 2o}
 
Theoremoninhaus 33793 The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.)
(On ∩ Haus) = {1o, 2o}
 
20.13  Mathbox for Jeff Hoffman
 
20.13.1  Inferences for finite induction on generic function values
 
Theoremfveleq 33794 Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
(𝐴 = 𝐵 → ((𝜑 → (𝐹𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐵) ∈ 𝑃)))
 
Theoremfindfvcl 33795* Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
(𝜑 → (𝐹‘∅) ∈ 𝑃)    &   (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))       (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
 
Theoremfindreccl 33796* Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.)
(𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)       (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
 
Theoremfindabrcl 33797* Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.)
(𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)       ((𝐶 ∈ ω ∧ 𝐴𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃)
 
20.13.2  gdc.mm
 
Theoremnnssi2 33798 Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
ℕ ⊆ 𝐷    &   (𝐵 ∈ ℕ → 𝜑)    &   ((𝐴𝐷𝐵𝐷𝜑) → 𝜓)       ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓)
 
Theoremnnssi3 33799 Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
ℕ ⊆ 𝐷    &   (𝐶 ∈ ℕ → 𝜑)    &   (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ 𝜑) → 𝜓)       ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓)
 
Theoremnndivsub 33800 Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900
  Copyright terms: Public domain < Previous  Next >