HomeHome Metamath Proof Explorer
Theorem List (p. 338 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 33701-33800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremply1annig1p 33701* The ideal 𝑄 of polynomials annihilating an element 𝐴 is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }    &   𝐾 = (RSpan‘𝑃)    &   𝐺 = (idlGen1p‘(𝐸s 𝐹))       (𝜑𝑄 = (𝐾‘{(𝐺𝑄)}))
 
Theoremminplyval 33702* Expand the value of the minimal polynomial (𝑀𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33701, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }    &   𝐾 = (RSpan‘𝑃)    &   𝐺 = (idlGen1p‘(𝐸s 𝐹))    &   𝑀 = (𝐸 minPoly 𝐹)       (𝜑 → (𝑀𝐴) = (𝐺𝑄))
 
Theoremminplycl 33703* The minimal polynomial is a polynomial. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }    &   𝐾 = (RSpan‘𝑃)    &   𝐺 = (idlGen1p‘(𝐸s 𝐹))    &   𝑀 = (𝐸 minPoly 𝐹)       (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
 
Theoremply1annprmidl 33704* The set 𝑄 of polynomials annihilating an element 𝐴 is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }       (𝜑𝑄 ∈ (PrmIdeal‘𝑃))
 
Theoremminplymindeg 33705 The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝐷 = (deg1‘(𝐸s 𝐹))    &   𝑍 = (0g𝑃)    &   𝑈 = (Base‘𝑃)    &   (𝜑 → ((𝑂𝐻)‘𝐴) = 0 )    &   (𝜑𝐻𝑈)    &   (𝜑𝐻𝑍)       (𝜑 → (𝐷‘(𝑀𝐴)) ≤ (𝐷𝐻))
 
Theoremminplyann 33706 The minimal polynomial for 𝐴 annihilates 𝐴 (Contributed by Thierry Arnoux, 25-Apr-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)       (𝜑 → ((𝑂‘(𝑀𝐴))‘𝐴) = 0 )
 
Theoremminplyirredlem 33707 Lemma for minplyirred 33708. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝑍 = (0g𝑃)    &   (𝜑 → (𝑀𝐴) ≠ 𝑍)    &   (𝜑𝐺 ∈ (Base‘𝑃))    &   (𝜑𝐻 ∈ (Base‘𝑃))    &   (𝜑 → (𝐺(.r𝑃)𝐻) = (𝑀𝐴))    &   (𝜑 → ((𝑂𝐺)‘𝐴) = (0g𝐸))    &   (𝜑𝐺𝑍)    &   (𝜑𝐻𝑍)       (𝜑𝐻 ∈ (Unit‘𝑃))
 
Theoremminplyirred 33708 A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝑍 = (0g𝑃)    &   (𝜑 → (𝑀𝐴) ≠ 𝑍)       (𝜑 → (𝑀𝐴) ∈ (Irred‘𝑃))
 
Theoremirngnminplynz 33709 Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑍 = (0g‘(Poly1𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))       (𝜑 → (𝑀𝐴) ≠ 𝑍)
 
Theoremminplym1p 33710 A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑍 = (0g‘(Poly1𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑈 = (Monic1p‘(𝐸s 𝐹))       (𝜑 → (𝑀𝐴) ∈ 𝑈)
 
Theoremminplynzm1p 33711 If a minimal polynomial is nonzero, then it is monic. (Contributed by Thierry Arnoux, 26-Oct-2025.)
𝐵 = (Base‘𝐸)    &   𝑍 = (0g‘(Poly1𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝑀𝐴) ≠ 𝑍)    &   𝑈 = (Monic1p‘(𝐸s 𝐹))       (𝜑 → (𝑀𝐴) ∈ 𝑈)
 
Theoremminplyelirng 33712 If the minimial polynomial 𝐹 of an element 𝑋 of a field 𝑅 has nonnegative degree, then 𝑋 is integral. (Contributed by Thierry Arnoux, 26-Oct-2025.)
𝐵 = (Base‘𝑅)    &   𝑀 = (𝑅 minPoly 𝑆)    &   𝐷 = (deg1‘(𝑅s 𝑆))    &   (𝜑𝑅 ∈ Field)    &   (𝜑𝑆 ∈ (SubDRing‘𝑅))    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)       (𝜑𝐴 ∈ (𝑅 IntgRing 𝑆))
 
Theoremirredminply 33713 An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &    0 = (0g𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   𝑍 = (0g𝑃)    &   (𝜑 → ((𝑂𝐺)‘𝐴) = 0 )    &   (𝜑𝐺 ∈ (Irred‘𝑃))    &   (𝜑𝐺 ∈ (Monic1p‘(𝐸s 𝐹)))       (𝜑𝐺 = (𝑀𝐴))
 
Theoremalgextdeglem1 33714 Lemma for algextdeg 33722. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))       (𝜑 → (𝐿s 𝐹) = 𝐾)
 
Theoremalgextdeglem2 33715* Lemma for algextdeg 33722. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹)))
 
Theoremalgextdeglem3 33716* Lemma for algextdeg 33722. The quotient 𝑃 / 𝑍 of the vector space 𝑃 of polynomials by the subspace 𝑍 of polynomials annihilating 𝐴 is itself a vector space. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑𝑄 ∈ LVec)
 
Theoremalgextdeglem4 33717* Lemma for algextdeg 33722. By lmhmqusker 33395, the surjective module homomorphism 𝐺 described in algextdeglem2 33715 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾))
 
Theoremalgextdeglem5 33718* Lemma for algextdeg 33722. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))       (𝜑𝑍 = ((RSpan‘𝑃)‘{(𝑀𝐴)}))
 
Theoremalgextdeglem6 33719* Lemma for algextdeg 33722. By r1pquslmic 33583, the univariate polynomial remainder ring (𝐻s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))    &   𝑅 = (rem1p𝐾)    &   𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))       (𝜑 → (dim‘𝑄) = (dim‘(𝐻s 𝑃)))
 
Theoremalgextdeglem7 33720* Lemma for algextdeg 33722. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))    &   𝑅 = (rem1p𝐾)    &   𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))    &   𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))    &   (𝜑𝑋𝑈)       (𝜑 → (𝑋𝑇 ↔ (𝐻𝑋) = 𝑋))
 
Theoremalgextdeglem8 33721* Lemma for algextdeg 33722. The dimension of the univariate polynomial remainder ring (𝐻s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1𝐾)    &   𝑈 = (Base‘𝑃)    &   𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))    &   𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))    &   𝑍 = (𝐺 “ {(0g𝐿)})    &   𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))    &   𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))    &   𝑅 = (rem1p𝐾)    &   𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))    &   𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))       (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
 
Theoremalgextdeg 33722 The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))    &   𝐷 = (deg1𝐸)    &   𝑀 = (𝐸 minPoly 𝐹)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))       (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀𝐴)))
 
21.3.11.4  Quadratic Field Extensions
 
Theoremrtelextdg2lem 33723 Lemma for rtelextdg2 33724: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))    &    0 = (0g𝐸)    &   𝑃 = (Poly1𝐾)    &   𝑉 = (Base‘𝐸)    &    · = (.r𝐸)    &    + = (+g𝐸)    &    = (.g‘(mulGrp‘𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝑋𝑉)    &   (𝜑𝐴𝐹)    &   (𝜑𝐵𝐹)    &   (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )    &   𝑌 = (var1𝐾)    &    = (+g𝑃)    &    = (.r𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑈 = (algSc‘𝑃)    &   𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))       (𝜑 → (𝐿[:]𝐾) ≤ 2)
 
Theoremrtelextdg2 33724 If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))    &    0 = (0g𝐸)    &   𝑃 = (Poly1𝐾)    &   𝑉 = (Base‘𝐸)    &    · = (.r𝐸)    &    + = (+g𝐸)    &    = (.g‘(mulGrp‘𝐸))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝑋𝑉)    &   (𝜑𝐴𝐹)    &   (𝜑𝐵𝐹)    &   (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )       (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
 
21.3.11.5  Towers of quadratic extentions
 
Theoremfldext2chn 33725* In a non-empty chain 𝑇 of quadratic field extensions, the degree of the final extension is always a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐸 = (𝑊s 𝑒)    &   𝐹 = (𝑊s 𝑓)    &    < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}    &   (𝜑𝑇 ∈ ( < Chain(SubDRing‘𝑊)))    &   (𝜑𝑊 ∈ Field)    &   (𝜑 → (𝑊s (𝑇‘0)) = 𝑄)    &   (𝜑 → (𝑊s (lastS‘𝑇)) = 𝐿)    &   (𝜑 → 0 < (♯‘𝑇))       (𝜑 → (𝐿/FldExt𝑄 ∧ ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
 
21.3.12  Constructible Numbers

This section defines the set of constructible points as complex numbers which can be drawn starting from two points (we take 0 and 1), and taking intersections of circles and lines.

This construction is useful for proving the impossibility of doubling the cube (2sqr3nconstr 33778), and of angle trisection (cos9thpinconstr 33788)

 
Syntaxcconstr 33726 Extend class notation with the set of constructible points.
class Constr
 
Definitiondf-constr 33727* Define the set of geometrically constructible points, by recursively adding the line-line, line-circle and circle-circle intersections constructions using points in a previous iteration. Definition 7.4. in [Stewart] p. 92 (Contributed by Saveliy Skresanov, 19-Jan-2025.)
Constr = (rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1}) “ ω)
 
Theoremconstrrtll 33728 In the construction of constructible numbers, line-line intersections are solutions of linear equations, and can therefore be completely constructed. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑𝑋 = (𝐶 + (𝑅 · (𝐷𝐶))))    &   (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐷𝐶))) ≠ 0)    &   𝑁 = (𝐴 + (((((𝐴𝐶) · ((∗‘𝐷) − (∗‘𝐶))) − (((∗‘𝐴) − (∗‘𝐶)) · (𝐷𝐶))) / ((((∗‘𝐵) − (∗‘𝐴)) · (𝐷𝐶)) − ((𝐵𝐴) · ((∗‘𝐷) − (∗‘𝐶))))) · (𝐵𝐴)))       (𝜑𝑋 = 𝑁)
 
Theoremconstrrtlc1 33729 In the construction of constructible numbers, line-circle intersections are roots of a quadratic equation, non-degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑 → (abs‘(𝑋𝐶)) = (abs‘(𝐸𝐹)))    &   𝑄 = (((∗‘𝐵) − (∗‘𝐴)) / (𝐵𝐴))    &   𝑀 = (((((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶)) − (𝐶 · 𝑄)) / 𝑄)    &   𝑁 = (-((𝐶 · (((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶))) + ((𝐸𝐹) · ((∗‘𝐸) − (∗‘𝐹)))) / 𝑄)    &   (𝜑𝐴𝐵)       (𝜑 → (((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0 ∧ 𝑄 ≠ 0))
 
Theoremconstrrtlc2 33730 In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑 → (abs‘(𝑋𝐶)) = (abs‘(𝐸𝐹)))    &   (𝜑𝐴 = 𝐵)       (𝜑𝑋 = 𝐴)
 
Theoremconstrrtcclem 33731 In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. Case of non-degenerate circles. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝐴𝐷)    &   (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐶)))    &   (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))    &   𝑃 = ((𝐵𝐶) · (∗‘(𝐵𝐶)))    &   𝑄 = ((𝐸𝐹) · (∗‘(𝐸𝐹)))    &   𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴)))    &   𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴)))    &   (𝜑𝐵𝐶)    &   (𝜑𝐸𝐹)       (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0)
 
Theoremconstrrtcc 33732 In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. (Contributed by Thierry Arnoux, 6-Jul-2025.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝐴𝐷)    &   (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐶)))    &   (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))    &   𝑃 = ((𝐵𝐶) · (∗‘(𝐵𝐶)))    &   𝑄 = ((𝐸𝐹) · (∗‘(𝐸𝐹)))    &   𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴)))    &   𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴)))       (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0)
 
Theoremisconstr 33733* Property of being a constructible number. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})       (𝐴 ∈ Constr ↔ ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
 
Theoremconstr0 33734 The first step of the construction of constructible numbers is the pair {0, 1}. In this theorem and the following, we use (𝐶𝑁) for the 𝑁-th intermediate iteration of the constructible number. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})       (𝐶‘∅) = {0, 1}
 
Theoremconstrsuc 33735* Membership in the successor step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   𝑆 = (𝐶𝑁)       (𝜑 → (𝑋 ∈ (𝐶‘suc 𝑁) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎𝑆𝑏𝑆𝑐𝑆𝑑𝑆𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑆𝑏𝑆𝑐𝑆𝑒𝑆𝑓𝑆𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑆𝑏𝑆𝑐𝑆𝑑𝑆𝑒𝑆𝑓𝑆 (𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))))
 
Theoremconstrlim 33736* Limit step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁𝑉)    &   (𝜑 → Lim 𝑁)       (𝜑 → (𝐶𝑁) = 𝑛𝑁 (𝐶𝑛))
 
Theoremconstrsscn 33737* Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)       (𝜑 → (𝐶𝑁) ⊆ ℂ)
 
Theoremconstrsslem 33738* Lemma for constrss 33740. This lemma requires the additional condition that 0 is a constructible number; that condition is removed in constrss 33740. (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   (𝜑 → 0 ∈ (𝐶𝑁))       (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
 
Theoremconstr01 33739* 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)       (𝜑 → {0, 1} ⊆ (𝐶𝑁))
 
Theoremconstrss 33740* Constructed points are in the next generation constructed points. Lemma 7.3 of [Stewart] p. 91 (Contributed by Thierry Arnoux, 25-Jun-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)       (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
 
Theoremconstrmon 33741* The construction of constructible numbers is monotonous, i.e. if the ordinal 𝑀 is less than the ordinal 𝑁, which is denoted by 𝑀𝑁, then the 𝑀-th step of the constructible numbers is included in the 𝑁-th step. (Contributed by Thierry Arnoux, 1-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   (𝜑𝑀𝑁)       (𝜑 → (𝐶𝑀) ⊆ (𝐶𝑁))
 
Theoremconstrconj 33742* If a point 𝑋 of the complex plane is constructible, so is its conjugate (∗‘𝑋). (Proposed by Saveliy Skresanov, 25-Jun-2025.) (Contributed by Thierry Arnoux, 1-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ On)    &   (𝜑𝑋 ∈ (𝐶𝑁))       (𝜑 → (∗‘𝑋) ∈ (𝐶𝑁))
 
Theoremconstrfin 33743* Each step of the construction of constructible numbers is finite. (Contributed by Thierry Arnoux, 6-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝑁 ∈ ω)       (𝜑 → (𝐶𝑁) ∈ Fin)
 
Theoremconstrelextdg2 33744* If the 𝑁-th step (𝐶𝑁) of the construction of constuctible numbers is included in a subfield 𝐹 of the complex numbers, then any element 𝑋 of the next step (𝐶‘suc 𝑁) is either in 𝐹 or in a quadratic extension of 𝐹. (Contributed by Thierry Arnoux, 6-Jul-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   𝐾 = (ℂflds 𝐹)    &   𝐿 = (ℂflds (ℂfld fldGen (𝐹 ∪ {𝑋})))    &   (𝜑𝐹 ∈ (SubDRing‘ℂfld))    &   (𝜑𝑁 ∈ On)    &   (𝜑 → (𝐶𝑁) ⊆ 𝐹)    &   (𝜑𝑋 ∈ (𝐶‘suc 𝑁))       (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
 
Theoremconstrextdg2lem 33745* Lemma for constrextdg2 33746 (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   𝐸 = (ℂflds 𝑒)    &   𝐹 = (ℂflds 𝑓)    &    < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))    &   (𝜑 → (𝑅‘0) = ℚ)    &   (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))       (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
 
Theoremconstrextdg2 33746* Any step (𝐶𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with . See Theorem 7.11 of [Stewart] p. 97. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   𝐸 = (ℂflds 𝑒)    &   𝐹 = (ℂflds 𝑓)    &    < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}    &   (𝜑𝑁 ∈ ω)       (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
 
Theoremconstrext2chnlem 33747* Lemma for constrext2chn 33756. (Contributed by Thierry Arnoux, 26-Oct-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   𝐸 = (ℂflds 𝑒)    &   𝐹 = (ℂflds 𝑓)    &    < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}    &   (𝜑𝑁 ∈ ω)    &   𝑄 = (ℂflds ℚ)    &   𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))    &   (𝜑𝐴 ∈ Constr)       (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
 
Theoremconstrfiss 33748* For any finite set 𝐴 of constructible numbers, there is a 𝑛 -th step (𝐶𝑛) containing all numbers in 𝐴. (Contributed by Thierry Arnoux, 2-Nov-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝐴 ⊆ Constr)    &   (𝜑𝐴 ∈ Fin)       (𝜑 → ∃𝑛 ∈ ω 𝐴 ⊆ (𝐶𝑛))
 
Theoremconstrllcllem 33749* Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝐴 ∈ Constr)    &   (𝜑𝐵 ∈ Constr)    &   (𝜑𝐺 ∈ Constr)    &   (𝜑𝐷 ∈ Constr)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑𝑋 = (𝐺 + (𝑅 · (𝐷𝐺))))    &   (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐷𝐺))) ≠ 0)       (𝜑𝑋 ∈ Constr)
 
Theoremconstrlccllem 33750* Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝐴 ∈ Constr)    &   (𝜑𝐵 ∈ Constr)    &   (𝜑𝐺 ∈ Constr)    &   (𝜑𝐸 ∈ Constr)    &   (𝜑𝐹 ∈ Constr)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑 → (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))       (𝜑𝑋 ∈ Constr)
 
Theoremconstrcccllem 33751* Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})    &   (𝜑𝐴 ∈ Constr)    &   (𝜑𝐵 ∈ Constr)    &   (𝜑𝐺 ∈ Constr)    &   (𝜑𝐷 ∈ Constr)    &   (𝜑𝐸 ∈ Constr)    &   (𝜑𝐹 ∈ Constr)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝐴𝐷)    &   (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)))    &   (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))       (𝜑𝑋 ∈ Constr)
 
Theoremconstrcbvlem 33752* Technical lemma for eliminating the hypothesis of constr0 33734 and co. (Contributed by Thierry Arnoux, 2-Nov-2025.)
rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
 
Theoremconstrllcl 33753 Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝐴 ∈ Constr)    &   (𝜑𝐵 ∈ Constr)    &   (𝜑𝐺 ∈ Constr)    &   (𝜑𝐷 ∈ Constr)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑𝑋 = (𝐺 + (𝑅 · (𝐷𝐺))))    &   (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐷𝐺))) ≠ 0)       (𝜑𝑋 ∈ Constr)
 
Theoremconstrlccl 33754 Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝐴 ∈ Constr)    &   (𝜑𝐵 ∈ Constr)    &   (𝜑𝐺 ∈ Constr)    &   (𝜑𝐸 ∈ Constr)    &   (𝜑𝐹 ∈ Constr)    &   (𝜑𝑇 ∈ ℝ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))    &   (𝜑 → (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))       (𝜑𝑋 ∈ Constr)
 
Theoremconstrcccl 33755 Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝐴 ∈ Constr)    &   (𝜑𝐵 ∈ Constr)    &   (𝜑𝐶 ∈ Constr)    &   (𝜑𝐷 ∈ Constr)    &   (𝜑𝐸 ∈ Constr)    &   (𝜑𝐹 ∈ Constr)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝐴𝐷)    &   (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐶)))    &   (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))       (𝜑𝑋 ∈ Constr)
 
Theoremconstrext2chn 33756* If a constructible number generates some subfield 𝐿 of , then the degree of the extension of 𝐿 over is a power of two. Theorem 7.12 of [Stewart] p. 98. (Contributed by Thierry Arnoux, 26-Oct-2025.)
𝑄 = (ℂflds ℚ)    &   𝐿 = (ℂflds 𝑆)    &   𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴}))    &   (𝜑𝐴 ∈ Constr)       (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
 
Theoremconstrcn 33757 Constructible numbers are complex numbers. (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝑋 ∈ Constr)       (𝜑𝑋 ∈ ℂ)
 
Theoremnn0constr 33758 Nonnegative integers are constructible. (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝑁 ∈ ℕ0)       (𝜑𝑁 ∈ Constr)
 
Theoremconstraddcl 33759 Constructive numbers are closed under complex addition. Item (1) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝑋 ∈ Constr)    &   (𝜑𝑌 ∈ Constr)       (𝜑 → (𝑋 + 𝑌) ∈ Constr)
 
Theoremconstrnegcl 33760 Constructible numbers are closed under additive inverse. Item (2) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝑋 ∈ Constr)       (𝜑 → -𝑋 ∈ Constr)
 
Theoremzconstr 33761 Integers are constructible. (Contributed by Thierry Arnoux, 3-Nov-2025.)
(𝜑𝑋 ∈ ℤ)       (𝜑𝑋 ∈ Constr)
 
Theoremconstrdircl 33762 Constructible numbers are closed under taking the point on the unit circle having the same argument. (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝑋 ∈ Constr)    &   (𝜑𝑋 ≠ 0)       (𝜑 → (𝑋 / (abs‘𝑋)) ∈ Constr)
 
Theoremiconstr 33763 The imaginary unit i is constructible. (Contributed by Thierry Arnoux, 2-Nov-2025.)
i ∈ Constr
 
Theoremconstrremulcl 33764 If two real numbers 𝑋 and 𝑌 are constructible, then, so is their product. (Contributed by Thierry Arnoux, 2-Nov-2025.)
(𝜑𝑋 ∈ Constr)    &   (𝜑𝑌 ∈ Constr)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)       (𝜑 → (𝑋 · 𝑌) ∈ Constr)
 
Theoremconstrcjcl 33765 Constructible numbers are closed under complex conjugate. (Contributed by Thierry Arnoux, 5-Nov-2025.)
(𝜑𝑋 ∈ Constr)       (𝜑 → (∗‘𝑋) ∈ Constr)
 
Theoremconstrrecl 33766 Constructible numbers are closed under taking the real part. (Contributed by Thierry Arnoux, 5-Nov-2025.)
(𝜑𝑋 ∈ Constr)       (𝜑 → (ℜ‘𝑋) ∈ Constr)
 
Theoremconstrimcl 33767 Constructible numbers are closed under taking the imaginary part. (Contributed by Thierry Arnoux, 5-Nov-2025.)
(𝜑𝑋 ∈ Constr)       (𝜑 → (ℑ‘𝑋) ∈ Constr)
 
Theoremconstrmulcl 33768 Constructible numbers are closed under complex multiplication. Item (3) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 5-Nov-2025.)
(𝜑𝑋 ∈ Constr)    &   (𝜑𝑌 ∈ Constr)       (𝜑 → (𝑋 · 𝑌) ∈ Constr)
 
Theoremconstrreinvcl 33769 If a real number 𝑋 is constructible, then, so is its inverse. (Contributed by Thierry Arnoux, 5-Nov-2025.)
(𝜑𝑋 ∈ Constr)    &   (𝜑𝑋 ≠ 0)    &   (𝜑𝑋 ∈ ℝ)       (𝜑 → (1 / 𝑋) ∈ Constr)
 
Theoremconstrinvcl 33770 Constructible numbers are closed under complex inverse. Item (4) of Theorem 7.10 of [Stewart] p. 96 (Contributed by Thierry Arnoux, 5-Nov-2025.)
(𝜑𝑋 ∈ Constr)    &   (𝜑𝑋 ≠ 0)       (𝜑 → (1 / 𝑋) ∈ Constr)
 
Theoremconstrcon 33771* Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.)
𝐷 = (deg1‘(ℂflds ℚ))    &   𝑀 = (ℂfld minPoly ℚ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐹 = (𝑀𝐴))    &   (𝜑 → (𝐷𝐹) ∈ ℕ0)    &   ((𝜑𝑛 ∈ ℕ0) → (𝐷𝐹) ≠ (2↑𝑛))       (𝜑 → ¬ 𝐴 ∈ Constr)
 
Theoremconstrsdrg 33772 Constructible numbers form a subfield of the complex numbers. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Constr ∈ (SubDRing‘ℂfld)
 
Theoremconstrfld 33773 The constructible numbers form a field. (Contributed by Thierry Arnoux, 5-Nov-2025.)
(ℂflds Constr) ∈ Field
 
Theoremconstrresqrtcl 33774 If a positive real number 𝑋 is constructible, then, so is its square root. (Contributed by Thierry Arnoux, 5-Nov-2025.)
(𝜑𝑋 ∈ Constr)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑋)       (𝜑 → (√‘𝑋) ∈ Constr)
 
Theoremconstrabscl 33775 Constructible numbers are closed under absolute value (modulus). (Contributed by Thierry Arnoux, 6-Nov-2025.)
(𝜑𝑋 ∈ Constr)       (𝜑 → (abs‘𝑋) ∈ Constr)
 
Theoremconstrsqrtcl 33776 Constructible numbers are closed under taking the square root. This is not generally the case for the cubic root operation, see 2sqr3nconstr 33778. Item (5) of Theorem 7.10 of [Stewart] p. 96 (Proposed by Saveliy Skresanov, 3-Nov-2025.) (Contributed by Thierry Arnoux, 6-Nov-2025.)
(𝜑𝑋 ∈ Constr)       (𝜑 → (√‘𝑋) ∈ Constr)
 
21.3.12.1  Impossible constructions
 
Theorem2sqr3minply 33777 The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
𝑄 = (ℂflds ℚ)    &    = (-g𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑃 = (Poly1𝑄)    &   𝐾 = (algSc‘𝑃)    &   𝑋 = (var1𝑄)    &   𝐷 = (deg1𝑄)    &   𝐹 = ((3 𝑋) (𝐾‘2))    &   𝐴 = (2↑𝑐(1 / 3))    &   𝑀 = (ℂfld minPoly ℚ)       (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
 
Theorem2sqr3nconstr 33778 Doubling the cube is an impossible construction, i.e. the cube root of 2 is not constructible with straightedge and compass. Given a cube of edge of length one, a cube of double volume would have an edge of length (2↑𝑐(1 / 3)), however that number is not constructible. This is the first part of Metamath 100 proof #8. Theorem 7.13 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 26-Oct-2025.)
(2↑𝑐(1 / 3)) ∉ Constr
 
Theoremcos9thpiminplylem1 33779 The polynomial ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) has no integer roots. (Contributed by Thierry Arnoux, 9-Nov-2025.)
(𝜑𝑋 ∈ ℤ)       (𝜑 → ((𝑋↑3) + ((-3 · (𝑋↑2)) + 1)) ≠ 0)
 
Theoremcos9thpiminplylem2 33780 The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) has no rational roots. (Contributed by Thierry Arnoux, 9-Nov-2025.)
(𝜑𝑋 ∈ ℚ)       (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
 
Theoremcos9thpiminplylem3 33781 Lemma for cos9thpiminply 33785. (Contributed by Thierry Arnoux, 14-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))       ((𝑂↑2) + (𝑂 + 1)) = 0
 
Theoremcos9thpiminplylem4 33782 Lemma for cos9thpiminply 33785. (Contributed by Thierry Arnoux, 14-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))    &   𝑍 = (𝑂𝑐(1 / 3))       ((𝑍↑6) + (𝑍↑3)) = -1
 
Theoremcos9thpiminplylem5 33783 The constructed complex number 𝐴 is a root of the polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)). (Contributed by Thierry Arnoux, 14-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))    &   𝑍 = (𝑂𝑐(1 / 3))    &   𝐴 = (𝑍 + (1 / 𝑍))       ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
 
Theoremcos9thpiminplylem6 33784 Evaluation of the polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)). (Contributed by Thierry Arnoux, 14-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))    &   𝑍 = (𝑂𝑐(1 / 3))    &   𝐴 = (𝑍 + (1 / 𝑍))    &   𝑄 = (ℂflds ℚ)    &    + = (+g𝑃)    &    · = (.r𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑃 = (Poly1𝑄)    &   𝐾 = (algSc‘𝑃)    &   𝑋 = (var1𝑄)    &   𝐷 = (deg1𝑄)    &   𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))    &   (𝜑𝑌 ∈ ℂ)       (𝜑 → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑌) = ((𝑌↑3) + ((-3 · 𝑌) + 1)))
 
Theoremcos9thpiminply 33785 The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) is the minimal polynomial for 𝐴 over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))    &   𝑍 = (𝑂𝑐(1 / 3))    &   𝐴 = (𝑍 + (1 / 𝑍))    &   𝑄 = (ℂflds ℚ)    &    + = (+g𝑃)    &    · = (.r𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑃 = (Poly1𝑄)    &   𝐾 = (algSc‘𝑃)    &   𝑋 = (var1𝑄)    &   𝐷 = (deg1𝑄)    &   𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))    &   𝑀 = (ℂfld minPoly ℚ)       (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
 
Theoremcos9thpinconstrlem1 33786 The complex number 𝑂, representing an angle of (2 · π) / 3, is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))       𝑂 ∈ Constr
 
Theoremcos9thpinconstrlem2 33787 The complex number 𝐴 is not constructible. (Contributed by Thierry Arnoux, 15-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))    &   𝑍 = (𝑂𝑐(1 / 3))    &   𝐴 = (𝑍 + (1 / 𝑍))        ¬ 𝐴 ∈ Constr
 
Theoremcos9thpinconstr 33788 Trisecting an angle is an impossible construction. Given for example 𝑂 = (exp‘((i · (2 · π)) / 3)), which represents an angle of ((2 · π) / 3), the cube root of 𝑂 is not constructible with straightedge and compass, while 𝑂 itself is constructible. This is the second part of Metamath 100 proof #8. Theorem 7.14 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 15-Nov-2025.)
𝑂 = (exp‘((i · (2 · π)) / 3))    &   𝑍 = (𝑂𝑐(1 / 3))       (𝑂 ∈ Constr ∧ 𝑍 ∉ Constr)
 
Theoremtrisecnconstr 33789 Not all angles can be trisected. (Contributed by Thierry Arnoux, 15-Nov-2025.)
¬ ∀𝑜 ∈ Constr (𝑜𝑐(1 / 3)) ∈ Constr
 
21.3.13  Matrices
 
21.3.13.1  Submatrices
 
Syntaxcsmat 33790 Syntax for a function generating submatrices.
class subMat1
 
Definitiondf-smat 33791* Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 22471. (Contributed by Thierry Arnoux, 18-Aug-2020.)
subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
 
Theoremsmatfval 33792* Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
 
Theoremsmatrcl 33793 Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))       (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
 
Theoremsmatlem 33794 Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐽 ∈ ℕ)    &   (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)    &   (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)       (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))
 
Theoremsmattl 33795 Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (1..^𝐾))    &   (𝜑𝐽 ∈ (1..^𝐿))       (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽))
 
Theoremsmattr 33796 Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (𝐾...𝑀))    &   (𝜑𝐽 ∈ (1..^𝐿))       (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽))
 
Theoremsmatbl 33797 Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (1..^𝐾))    &   (𝜑𝐽 ∈ (𝐿...𝑁))       (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1)))
 
Theoremsmatbr 33798 Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (𝐾...𝑀))    &   (𝜑𝐽 ∈ (𝐿...𝑁))       (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))
 
Theoremsmatcl 33799 Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))    &   𝑆 = (𝐾(subMat1‘𝑀)𝐿)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑁))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)       (𝜑𝑆𝐶)
 
Theoremmatmpo 33800* Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       (𝑀𝐵𝑀 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖𝑀𝑗)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >