![]() |
Metamath
Proof Explorer Theorem List (p. 338 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | irngss 33701 | All elements of a subring 𝑆 are integral over 𝑆. This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng 33703). (Contributed by Thierry Arnoux, 28-Jan-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑆 ⊆ (𝑅 IntgRing 𝑆)) | ||
Theorem | irngssv 33702 | An integral element is an element of the base set. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) ⊆ 𝐵) | ||
Theorem | 0ringirng 33703 | A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) | ||
Theorem | irngnzply1lem 33704 | In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ 0 = (0g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝑃 ∈ dom 𝑂) & ⊢ (𝜑 → 𝑃 ≠ 𝑍) & ⊢ (𝜑 → ((𝑂‘𝑃)‘𝑋) = 0 ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐸 IntgRing 𝐹)) | ||
Theorem | irngnzply1 33705* | In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ 0 = (0g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) ⇒ ⊢ (𝜑 → (𝐸 IntgRing 𝐹) = ∪ 𝑝 ∈ (dom 𝑂 ∖ {𝑍})(◡(𝑂‘𝑝) “ { 0 })) | ||
Syntax | cminply 33706 | Extend class notation with the minimal polynomial builder function. |
class minPoly | ||
Definition | df-minply 33707* | Define the minimal polynomial builder function. (Contributed by Thierry Arnoux, 19-Jan-2025.) |
⊢ minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒 ↾s 𝑓))‘{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑝)‘𝑥) = (0g‘𝑒)}))) | ||
Theorem | ply1annidllem 33708* | Write the set 𝑄 of polynomials annihilating an element 𝐴 as the kernel of the ring homomorphism 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑄 = (◡𝐹 “ { 0 })) | ||
Theorem | ply1annidl 33709* | The set 𝑄 of polynomials annihilating an element 𝐴 forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ⇒ ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) | ||
Theorem | ply1annnr 33710* | The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑄 ≠ 𝑈) | ||
Theorem | ply1annig1p 33711* | The ideal 𝑄 of polynomials annihilating an element 𝐴 is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) ⇒ ⊢ (𝜑 → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) | ||
Theorem | minplyval 33712* | Expand the value of the minimal polynomial (𝑀‘𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33711, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = (𝐺‘𝑄)) | ||
Theorem | minplycl 33713* | The minimal polynomial is a polynomial. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) | ||
Theorem | ply1annprmidl 33714* | The set 𝑄 of polynomials annihilating an element 𝐴 is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ⇒ ⊢ (𝜑 → 𝑄 ∈ (PrmIdeal‘𝑃)) | ||
Theorem | minplymindeg 33715 | The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) & ⊢ (𝜑 → 𝐻 ∈ 𝑈) & ⊢ (𝜑 → 𝐻 ≠ 𝑍) ⇒ ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) | ||
Theorem | minplyann 33716 | The minimal polynomial for 𝐴 annihilates 𝐴 (Contributed by Thierry Arnoux, 25-Apr-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) | ||
Theorem | minplyirredlem 33717 | Lemma for minplyirred 33718. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) & ⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) & ⊢ (𝜑 → 𝐻 ∈ (Base‘𝑃)) & ⊢ (𝜑 → (𝐺(.r‘𝑃)𝐻) = (𝑀‘𝐴)) & ⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = (0g‘𝐸)) & ⊢ (𝜑 → 𝐺 ≠ 𝑍) & ⊢ (𝜑 → 𝐻 ≠ 𝑍) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Unit‘𝑃)) | ||
Theorem | minplyirred 33718 | A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Irred‘𝑃)) | ||
Theorem | irngnminplynz 33719 | Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) | ||
Theorem | minplym1p 33720 | A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) | ||
Theorem | irredminply 33721 | An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = 0 ) & ⊢ (𝜑 → 𝐺 ∈ (Irred‘𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (Monic1p‘(𝐸 ↾s 𝐹))) ⇒ ⊢ (𝜑 → 𝐺 = (𝑀‘𝐴)) | ||
Theorem | algextdeglem1 33722 | Lemma for algextdeg 33730. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) | ||
Theorem | algextdeglem2 33723* | Lemma for algextdeg 33730. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) | ||
Theorem | algextdeglem3 33724* | Lemma for algextdeg 33730. The quotient 𝑃 / 𝑍 of the vector space 𝑃 of polynomials by the subspace 𝑍 of polynomials annihilating 𝐴 is itself a vector space. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝑄 ∈ LVec) | ||
Theorem | algextdeglem4 33725* | Lemma for algextdeg 33730. By lmhmqusker 33424, the surjective module homomorphism 𝐺 described in algextdeglem2 33723 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾)) | ||
Theorem | algextdeglem5 33726* | Lemma for algextdeg 33730. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) | ||
Theorem | algextdeglem6 33727* | Lemma for algextdeg 33730. By r1pquslmic 33610, the univariate polynomial remainder ring (𝐻 “s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) ⇒ ⊢ (𝜑 → (dim‘𝑄) = (dim‘(𝐻 “s 𝑃))) | ||
Theorem | algextdeglem7 33728* | Lemma for algextdeg 33730. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) & ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) | ||
Theorem | algextdeglem8 33729* | Lemma for algextdeg 33730. The dimension of the univariate polynomial remainder ring (𝐻 “s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) & ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) ⇒ ⊢ (𝜑 → (dim‘(𝐻 “s 𝑃)) = (𝐷‘(𝑀‘𝐴))) | ||
Theorem | algextdeg 33730 | The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) | ||
Theorem | rtelextdg2lem 33731 | Lemma for rtelextdg2 33732: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑉 = (Base‘𝐸) & ⊢ · = (.r‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ ↑ = (.g‘(mulGrp‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐹) & ⊢ (𝜑 → 𝐵 ∈ 𝐹) & ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) & ⊢ 𝑌 = (var1‘𝐾) & ⊢ ⊕ = (+g‘𝑃) & ⊢ ⊗ = (.r‘𝑃) & ⊢ ∧ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐺 = ((2 ∧ 𝑌) ⊕ (((𝑈‘𝐴) ⊗ 𝑌) ⊕ (𝑈‘𝐵))) ⇒ ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) | ||
Theorem | rtelextdg2 33732 | If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑉 = (Base‘𝐸) & ⊢ · = (.r‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ ↑ = (.g‘(mulGrp‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐹) & ⊢ (𝜑 → 𝐵 ∈ 𝐹) & ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) | ||
Theorem | fldext2chn 33733* | In a non-empty tower 𝑇 of quadratic field extensions, the degree of the extension of the first member by the last is a power of two. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
⊢ < = {〈𝑓, 𝑒〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)} & ⊢ (𝜑 → 𝑇 ∈ ( < ChainField)) & ⊢ (𝜑 → (𝑇‘0) = 𝑄) & ⊢ (𝜑 → (lastS‘𝑇) = 𝐹) & ⊢ (𝜑 → 0 < (♯‘𝑇)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛)) | ||
This section defines the set of constructible points as complex numbers which can be drawn starting from two points (we take 0 and 1), and taking intersections of circles and lines. This construction is useful for proving the impossibility of doubling the cube ( * imp2cube ), and of angle trisection ( * imp3ang ) | ||
Syntax | cconstr 33734 | Extend class notation with the set of constructible points. |
class Constr | ||
Definition | df-constr 33735* | Define the set of geometrically constructible points, by recursively adding the line-line, line-circle and circle-circle intersections constructions using points in a previous iteration. (Contributed by Saveliy Skresanov, 19-Jan-2025.) |
⊢ Constr = (rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) “ ω) | ||
Theorem | constrrtll 33736 | In the construction of constructible numbers, line-line intersections are solutions of linear equations, and can therefore be completely constructed. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → 𝑋 = (𝐶 + (𝑅 · (𝐷 − 𝐶)))) & ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐷 − 𝐶))) ≠ 0) & ⊢ 𝑁 = (𝐴 + (((((𝐴 − 𝐶) · ((∗‘𝐷) − (∗‘𝐶))) − (((∗‘𝐴) − (∗‘𝐶)) · (𝐷 − 𝐶))) / ((((∗‘𝐵) − (∗‘𝐴)) · (𝐷 − 𝐶)) − ((𝐵 − 𝐴) · ((∗‘𝐷) − (∗‘𝐶))))) · (𝐵 − 𝐴))) ⇒ ⊢ (𝜑 → 𝑋 = 𝑁) | ||
Theorem | constrrtlc1 33737 | In the construction of constructible numbers, line-circle intersections are roots of a quadratic equation, non-degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑄 = (((∗‘𝐵) − (∗‘𝐴)) / (𝐵 − 𝐴)) & ⊢ 𝑀 = (((((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶)) − (𝐶 · 𝑄)) / 𝑄) & ⊢ 𝑁 = (-((𝐶 · (((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶))) + ((𝐸 − 𝐹) · ((∗‘𝐸) − (∗‘𝐹)))) / 𝑄) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0 ∧ 𝑄 ≠ 0)) | ||
Theorem | constrrtlc2 33738 | In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝐴) | ||
Theorem | constrrtcclem 33739 | In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. Case of non-degenerate circles. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐶))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑃 = ((𝐵 − 𝐶) · (∗‘(𝐵 − 𝐶))) & ⊢ 𝑄 = ((𝐸 − 𝐹) · (∗‘(𝐸 − 𝐹))) & ⊢ 𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ 𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0) | ||
Theorem | constrrtcc 33740 | In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐶))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑃 = ((𝐵 − 𝐶) · (∗‘(𝐵 − 𝐶))) & ⊢ 𝑄 = ((𝐸 − 𝐹) · (∗‘(𝐸 − 𝐹))) & ⊢ 𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ 𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴))) ⇒ ⊢ (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0) | ||
Theorem | constr0 33741 | The first step of the construction of constructible numbers is the pair {0, 1}. In this theorem and the following, we use (𝐶‘𝑁) for the 𝑁-th intermediate iteration of the constructible number. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) ⇒ ⊢ (𝐶‘∅) = {0, 1} | ||
Theorem | constrsuc 33742* | Membership in the successor step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ 𝑆 = (𝐶‘𝑁) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐶‘suc 𝑁) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑑 ∈ 𝑆 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑒 ∈ 𝑆 ∃𝑓 ∈ 𝑆 ∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑋 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑑 ∈ 𝑆 ∃𝑒 ∈ 𝑆 ∃𝑓 ∈ 𝑆 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))))) | ||
Theorem | constrlim 33743* | Limit step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → Lim 𝑁) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) = ∪ 𝑛 ∈ 𝑁 (𝐶‘𝑛)) | ||
Theorem | constrsscn 33744* | Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ ℂ) | ||
Theorem | constrsslem 33745* | Lemma for constrss 33747. This lemma requires the additional condition that 0 is the constructible number; that condition is removed in constrss 33747. (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 0 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ (𝐶‘suc 𝑁)) | ||
Theorem | constr01 33746* | 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) | ||
Theorem | constrss 33747* | Constructed points are in the next generation constructed points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ (𝐶‘suc 𝑁)) | ||
Theorem | constrmon 33748* | The construction of constructible numbers is monotonous, i.e. if the ordinal 𝑀 is less than the ordinal 𝑁, which is denoted by 𝑀 ∈ 𝑁, then the 𝑀-th step of the constructible numbers is included in the 𝑁-th step. (Contributed by Thierry Arnoux, 1-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝐶‘𝑀) ⊆ (𝐶‘𝑁)) | ||
Theorem | constrconj 33749* | If a point 𝑋 of the complex plane is constructible, so is its conjugate (∗‘𝑋). (Proposed by Saveliy Skresanov, 25-Jun-2025.) (Contributed by Thierry Arnoux, 1-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 𝑋 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (∗‘𝑋) ∈ (𝐶‘𝑁)) | ||
Theorem | constrfin 33750* | Each step of the construction of constructible numbers is finite. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) | ||
Theorem | constrelextdg2 33751* | If the 𝑁-th step (𝐶‘𝑁) of the construction of constuctible numbers is included in a subfield 𝐹 of the complex numbers, then any element 𝑋 of the next step (𝐶‘suc 𝑁) is either in 𝐹 or in a quadratic extension of 𝐹. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ 𝐾 = (ℂfld ↾s 𝐹) & ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (𝐹 ∪ {𝑋}))) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘ℂfld)) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → (𝐶‘𝑁) ⊆ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (𝐶‘suc 𝑁)) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) | ||
Theorem | 2sqr3minply 33752 | The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over ℚ, and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ − = (-g‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑃 = (Poly1‘𝑄) & ⊢ 𝐾 = (algSc‘𝑃) & ⊢ 𝑋 = (var1‘𝑄) & ⊢ 𝐷 = (deg1‘𝑄) & ⊢ 𝐹 = ((3 ↑ 𝑋) − (𝐾‘2)) & ⊢ 𝐴 = (2↑𝑐(1 / 3)) & ⊢ 𝑀 = (ℂfld minPoly ℚ) ⇒ ⊢ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3) | ||
Syntax | csmat 33753 | Syntax for a function generating submatrices. |
class subMat1 | ||
Definition | df-smat 33754* | Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 22598. (Contributed by Thierry Arnoux, 18-Aug-2020.) |
⊢ subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) | ||
Theorem | smatfval 33755* | Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) | ||
Theorem | smatrcl 33756 | Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) ⇒ ⊢ (𝜑 → 𝑆 ∈ (𝐵 ↑m ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | smatlem 33757 | Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋) & ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌)) | ||
Theorem | smattl 33758 | Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽)) | ||
Theorem | smattr 33759 | Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) | ||
Theorem | smatbl 33760 | Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) | ||
Theorem | smatbr 33761 | Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) | ||
Theorem | smatcl 33762 | Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) & ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
Theorem | matmpo 33763* | Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) | ||
Theorem | 1smat1 33764 | The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 22604. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 1 = (1r‘((1...𝑁) Mat 𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))) | ||
Theorem | submat1n 33765 | One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) | ||
Theorem | submatres 33766 | Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | submateqlem1 33767 | Lemma for submateq 33769. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) ⇒ ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateqlem2 33768 | Lemma for submateq 33769. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 < 𝐾) ⇒ ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateq 33769* | Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽)) | ||
Theorem | submatminr1 33770 | If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) | ||
Syntax | clmat 33771 | Extend class notation with the literal matrix conversion function. |
class litMat | ||
Definition | df-lmat 33772* | Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatval 33773* | Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatfval 33774* | Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) | ||
Theorem | lmatfvlem 33775* | Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ 𝐼 ≤ 𝑁 & ⊢ 𝐽 ≤ 𝑁 & ⊢ (𝐾 + 1) = 𝐼 & ⊢ (𝐿 + 1) = 𝐽 & ⊢ (𝑊‘𝐾) = 𝑋 & ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) | ||
Theorem | lmatcl 33776* | Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝑂 = ((1...𝑁) Mat 𝑅) & ⊢ 𝑃 = (Base‘𝑂) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑃) | ||
Theorem | lmat22lem 33777* | Lemma for lmat22e11 33778 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) | ||
Theorem | lmat22e11 33778 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀1) = 𝐴) | ||
Theorem | lmat22e12 33779 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀2) = 𝐵) | ||
Theorem | lmat22e21 33780 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀1) = 𝐶) | ||
Theorem | lmat22e22 33781 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀2) = 𝐷) | ||
Theorem | lmat22det 33782 | The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐽 = ((1...2) maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) | ||
Theorem | mdetpmtr1 33783* | The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀𝑗)) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
Theorem | mdetpmtr2 33784* | The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
Theorem | mdetpmtr12 33785* | The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐷‘𝐸))) | ||
Theorem | mdetlap1 33786* | A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (𝑁 maAdju 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) | ||
Theorem | madjusmdetlem1 33787* | Lemma for madjusmdet 33791. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐺 = (Base‘(SymGrp‘(1...𝑁))) & ⊢ 𝑆 = (pmSgn‘(1...𝑁)) & ⊢ 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃‘𝑖)𝑈(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) & ⊢ (𝜑 → (𝑃‘𝑁) = 𝐼) & ⊢ (𝜑 → (𝑄‘𝑁) = 𝐽) & ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | madjusmdetlem2 33788* | Lemma for madjusmdet 33791. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑋)) | ||
Theorem | madjusmdetlem3 33789* | Lemma for madjusmdet 33791. (Contributed by Thierry Arnoux, 27-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) | ||
Theorem | madjusmdetlem4 33790* | Lemma for madjusmdet 33791. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | madjusmdet 33791 | Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | mdetlap 33792* | Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) | ||
Theorem | ist0cld 33793* | The predicate "is a T0 space", using closed sets. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ (𝜑 → 𝐵 = ∪ 𝐽) & ⊢ (𝜑 → 𝐷 = (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∀𝑑 ∈ 𝐷 (𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦)))) | ||
Theorem | txomap 33794* | Given two open maps 𝐹 and 𝐺, 𝐻 mapping pairs of sets, is also an open map for the product topology. (Contributed by Thierry Arnoux, 29-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑍) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑇) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑇)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐿) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 “ 𝑦) ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ (𝐽 ×t 𝐾)) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ⇒ ⊢ (𝜑 → (𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀)) | ||
Theorem | qtopt1 33795* | If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Fre) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) | ||
Theorem | qtophaus 33796* | If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ ∼ = (◡𝐹 ∘ 𝐹) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹)) & ⊢ (𝜑 → ∼ ∈ (Clsd‘(𝐽 ×t 𝐽))) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Haus) | ||
Theorem | circtopn 33797* | The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ (𝐽 qTop 𝐹) = (TopOpen‘(𝐹 “s ℝfld)) | ||
Theorem | circcn 33798* | The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) | ||
Theorem | reff 33799* | For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg 10525. (Contributed by Thierry Arnoux, 12-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐵 ↔ (∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑣 ∈ 𝐴 𝑣 ⊆ (𝑓‘𝑣))))) | ||
Theorem | locfinreflem 33800* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |