![]() |
Metamath
Proof Explorer Theorem List (p. 338 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | minplymindeg 33701 | The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) & ⊢ (𝜑 → 𝐻 ∈ 𝑈) & ⊢ (𝜑 → 𝐻 ≠ 𝑍) ⇒ ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) | ||
Theorem | minplyann 33702 | The minimal polynomial for 𝐴 annihilates 𝐴 (Contributed by Thierry Arnoux, 25-Apr-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) | ||
Theorem | minplyirredlem 33703 | Lemma for minplyirred 33704. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) & ⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) & ⊢ (𝜑 → 𝐻 ∈ (Base‘𝑃)) & ⊢ (𝜑 → (𝐺(.r‘𝑃)𝐻) = (𝑀‘𝐴)) & ⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = (0g‘𝐸)) & ⊢ (𝜑 → 𝐺 ≠ 𝑍) & ⊢ (𝜑 → 𝐻 ≠ 𝑍) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Unit‘𝑃)) | ||
Theorem | minplyirred 33704 | A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Irred‘𝑃)) | ||
Theorem | irngnminplynz 33705 | Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) | ||
Theorem | minplym1p 33706 | A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) | ||
Theorem | irredminply 33707 | An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = 0 ) & ⊢ (𝜑 → 𝐺 ∈ (Irred‘𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (Monic1p‘(𝐸 ↾s 𝐹))) ⇒ ⊢ (𝜑 → 𝐺 = (𝑀‘𝐴)) | ||
Theorem | algextdeglem1 33708 | Lemma for algextdeg 33716. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) | ||
Theorem | algextdeglem2 33709* | Lemma for algextdeg 33716. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) | ||
Theorem | algextdeglem3 33710* | Lemma for algextdeg 33716. The quotient 𝑃 / 𝑍 of the vector space 𝑃 of polynomials by the subspace 𝑍 of polynomials annihilating 𝐴 is itself a vector space. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝑄 ∈ LVec) | ||
Theorem | algextdeglem4 33711* | Lemma for algextdeg 33716. By lmhmqusker 33410, the surjective module homomorphism 𝐺 described in algextdeglem2 33709 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾)) | ||
Theorem | algextdeglem5 33712* | Lemma for algextdeg 33716. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) | ||
Theorem | algextdeglem6 33713* | Lemma for algextdeg 33716. By r1pquslmic 33596, the univariate polynomial remainder ring (𝐻 “s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) ⇒ ⊢ (𝜑 → (dim‘𝑄) = (dim‘(𝐻 “s 𝑃))) | ||
Theorem | algextdeglem7 33714* | Lemma for algextdeg 33716. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) & ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) | ||
Theorem | algextdeglem8 33715* | Lemma for algextdeg 33716. The dimension of the univariate polynomial remainder ring (𝐻 “s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) & ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) ⇒ ⊢ (𝜑 → (dim‘(𝐻 “s 𝑃)) = (𝐷‘(𝑀‘𝐴))) | ||
Theorem | algextdeg 33716 | The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) | ||
Theorem | rtelextdg2lem 33717 | Lemma for rtelextdg2 33718: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑉 = (Base‘𝐸) & ⊢ · = (.r‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ ↑ = (.g‘(mulGrp‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐹) & ⊢ (𝜑 → 𝐵 ∈ 𝐹) & ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) & ⊢ 𝑌 = (var1‘𝐾) & ⊢ ⊕ = (+g‘𝑃) & ⊢ ⊗ = (.r‘𝑃) & ⊢ ∧ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐺 = ((2 ∧ 𝑌) ⊕ (((𝑈‘𝐴) ⊗ 𝑌) ⊕ (𝑈‘𝐵))) ⇒ ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) | ||
Theorem | rtelextdg2 33718 | If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑉 = (Base‘𝐸) & ⊢ · = (.r‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ ↑ = (.g‘(mulGrp‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐹) & ⊢ (𝜑 → 𝐵 ∈ 𝐹) & ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) | ||
Theorem | fldext2chn 33719* | In a non-empty tower 𝑇 of quadratic field extensions, the degree of the extension of the first member by the last is a power of two. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
⊢ < = {〈𝑓, 𝑒〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) = 2)} & ⊢ (𝜑 → 𝑇 ∈ ( < ChainField)) & ⊢ (𝜑 → (𝑇‘0) = 𝑄) & ⊢ (𝜑 → (lastS‘𝑇) = 𝐹) & ⊢ (𝜑 → 0 < (♯‘𝑇)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐹[:]𝑄) = (2↑𝑛)) | ||
This section defines the set of constructible points as complex numbers which can be drawn starting from two points (we take 0 and 1), and taking intersections of circles and lines. This construction is useful for proving the impossibility of doubling the cube ( * imp2cube ), and of angle trisection ( * imp3ang ) | ||
Syntax | cconstr 33720 | Extend class notation with the set of constructible points. |
class Constr | ||
Definition | df-constr 33721* | Define the set of geometrically constructible points, by recursively adding the line-line, line-circle and circle-circle intersections constructions using points in a previous iteration. (Contributed by Saveliy Skresanov, 19-Jan-2025.) |
⊢ Constr = (rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) “ ω) | ||
Theorem | constrrtll 33722 | In the construction of constructible numbers, line-line intersections are solutions of linear equations, and can therefore be completely constructed. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → 𝑋 = (𝐶 + (𝑅 · (𝐷 − 𝐶)))) & ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐷 − 𝐶))) ≠ 0) & ⊢ 𝑁 = (𝐴 + (((((𝐴 − 𝐶) · ((∗‘𝐷) − (∗‘𝐶))) − (((∗‘𝐴) − (∗‘𝐶)) · (𝐷 − 𝐶))) / ((((∗‘𝐵) − (∗‘𝐴)) · (𝐷 − 𝐶)) − ((𝐵 − 𝐴) · ((∗‘𝐷) − (∗‘𝐶))))) · (𝐵 − 𝐴))) ⇒ ⊢ (𝜑 → 𝑋 = 𝑁) | ||
Theorem | constrrtlc1 33723 | In the construction of constructible numbers, line-circle intersections are roots of a quadratic equation, non-degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑄 = (((∗‘𝐵) − (∗‘𝐴)) / (𝐵 − 𝐴)) & ⊢ 𝑀 = (((((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶)) − (𝐶 · 𝑄)) / 𝑄) & ⊢ 𝑁 = (-((𝐶 · (((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶))) + ((𝐸 − 𝐹) · ((∗‘𝐸) − (∗‘𝐹)))) / 𝑄) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0 ∧ 𝑄 ≠ 0)) | ||
Theorem | constrrtlc2 33724 | In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝐴) | ||
Theorem | constrrtcclem 33725 | In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. Case of non-degenerate circles. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐶))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑃 = ((𝐵 − 𝐶) · (∗‘(𝐵 − 𝐶))) & ⊢ 𝑄 = ((𝐸 − 𝐹) · (∗‘(𝐸 − 𝐹))) & ⊢ 𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ 𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0) | ||
Theorem | constrrtcc 33726 | In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐶))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑃 = ((𝐵 − 𝐶) · (∗‘(𝐵 − 𝐶))) & ⊢ 𝑄 = ((𝐸 − 𝐹) · (∗‘(𝐸 − 𝐹))) & ⊢ 𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ 𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴))) ⇒ ⊢ (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0) | ||
Theorem | constr0 33727 | The first step of the construction of constructible numbers is the pair {0, 1}. In this theorem and the following, we use (𝐶‘𝑁) for the 𝑁-th intermediate iteration of the constructible number. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) ⇒ ⊢ (𝐶‘∅) = {0, 1} | ||
Theorem | constrsuc 33728* | Membership in the successor step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ 𝑆 = (𝐶‘𝑁) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐶‘suc 𝑁) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑑 ∈ 𝑆 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑒 ∈ 𝑆 ∃𝑓 ∈ 𝑆 ∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑋 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 ∃𝑑 ∈ 𝑆 ∃𝑒 ∈ 𝑆 ∃𝑓 ∈ 𝑆 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))))) | ||
Theorem | constrlim 33729* | Limit step of the construction of constructible numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → Lim 𝑁) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) = ∪ 𝑛 ∈ 𝑁 (𝐶‘𝑛)) | ||
Theorem | constrsscn 33730* | Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ ℂ) | ||
Theorem | constrsslem 33731* | Lemma for constrss 33733. This lemma requires the additional condition that 0 is the constructible number; that condition is removed in constrss 33733. (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 0 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ (𝐶‘suc 𝑁)) | ||
Theorem | constr01 33732* | 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) | ||
Theorem | constrss 33733* | Constructed points are in the next generation constructed points. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ⊆ (𝐶‘suc 𝑁)) | ||
Theorem | constrmon 33734* | The construction of constructible numbers is monotonous, i.e. if the ordinal 𝑀 is less than the ordinal 𝑁, which is denoted by 𝑀 ∈ 𝑁, then the 𝑀-th step of the constructible numbers is included in the 𝑁-th step. (Contributed by Thierry Arnoux, 1-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝐶‘𝑀) ⊆ (𝐶‘𝑁)) | ||
Theorem | constrconj 33735* | If a point 𝑋 of the complex plane is constructible, so is its conjugate (∗‘𝑋). (Proposed by Saveliy Skresanov, 25-Jun-2025.) (Contributed by Thierry Arnoux, 1-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → 𝑋 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (∗‘𝑋) ∈ (𝐶‘𝑁)) | ||
Theorem | constrfin 33736* | Each step of the construction of constructible numbers is finite. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) | ||
Theorem | constrelextdg2 33737* | If the 𝑁-th step (𝐶‘𝑁) of the construction of constuctible numbers is included in a subfield 𝐹 of the complex numbers, then any element 𝑋 of the next step (𝐶‘suc 𝑁) is either in 𝐹 or in a quadratic extension of 𝐹. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) & ⊢ 𝐾 = (ℂfld ↾s 𝐹) & ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (𝐹 ∪ {𝑋}))) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘ℂfld)) & ⊢ (𝜑 → 𝑁 ∈ On) & ⊢ (𝜑 → (𝐶‘𝑁) ⊆ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (𝐶‘suc 𝑁)) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) | ||
Theorem | 2sqr3minply 33738 | The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over ℚ, and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ − = (-g‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑃 = (Poly1‘𝑄) & ⊢ 𝐾 = (algSc‘𝑃) & ⊢ 𝑋 = (var1‘𝑄) & ⊢ 𝐷 = (deg1‘𝑄) & ⊢ 𝐹 = ((3 ↑ 𝑋) − (𝐾‘2)) & ⊢ 𝐴 = (2↑𝑐(1 / 3)) & ⊢ 𝑀 = (ℂfld minPoly ℚ) ⇒ ⊢ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3) | ||
Syntax | csmat 33739 | Syntax for a function generating submatrices. |
class subMat1 | ||
Definition | df-smat 33740* | Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 22604. (Contributed by Thierry Arnoux, 18-Aug-2020.) |
⊢ subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) | ||
Theorem | smatfval 33741* | Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) | ||
Theorem | smatrcl 33742 | Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) ⇒ ⊢ (𝜑 → 𝑆 ∈ (𝐵 ↑m ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | smatlem 33743 | Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋) & ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌)) | ||
Theorem | smattl 33744 | Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽)) | ||
Theorem | smattr 33745 | Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) | ||
Theorem | smatbl 33746 | Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) | ||
Theorem | smatbr 33747 | Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) | ||
Theorem | smatcl 33748 | Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) & ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
Theorem | matmpo 33749* | Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) | ||
Theorem | 1smat1 33750 | The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 22610. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 1 = (1r‘((1...𝑁) Mat 𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))) | ||
Theorem | submat1n 33751 | One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) | ||
Theorem | submatres 33752 | Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | submateqlem1 33753 | Lemma for submateq 33755. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) ⇒ ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateqlem2 33754 | Lemma for submateq 33755. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 < 𝐾) ⇒ ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateq 33755* | Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽)) | ||
Theorem | submatminr1 33756 | If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) | ||
Syntax | clmat 33757 | Extend class notation with the literal matrix conversion function. |
class litMat | ||
Definition | df-lmat 33758* | Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatval 33759* | Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatfval 33760* | Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) | ||
Theorem | lmatfvlem 33761* | Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ 𝐼 ≤ 𝑁 & ⊢ 𝐽 ≤ 𝑁 & ⊢ (𝐾 + 1) = 𝐼 & ⊢ (𝐿 + 1) = 𝐽 & ⊢ (𝑊‘𝐾) = 𝑋 & ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) | ||
Theorem | lmatcl 33762* | Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝑂 = ((1...𝑁) Mat 𝑅) & ⊢ 𝑃 = (Base‘𝑂) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑃) | ||
Theorem | lmat22lem 33763* | Lemma for lmat22e11 33764 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) | ||
Theorem | lmat22e11 33764 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀1) = 𝐴) | ||
Theorem | lmat22e12 33765 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀2) = 𝐵) | ||
Theorem | lmat22e21 33766 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀1) = 𝐶) | ||
Theorem | lmat22e22 33767 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀2) = 𝐷) | ||
Theorem | lmat22det 33768 | The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐽 = ((1...2) maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) | ||
Theorem | mdetpmtr1 33769* | The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀𝑗)) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
Theorem | mdetpmtr2 33770* | The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
Theorem | mdetpmtr12 33771* | The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐷‘𝐸))) | ||
Theorem | mdetlap1 33772* | A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (𝑁 maAdju 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) | ||
Theorem | madjusmdetlem1 33773* | Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐺 = (Base‘(SymGrp‘(1...𝑁))) & ⊢ 𝑆 = (pmSgn‘(1...𝑁)) & ⊢ 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃‘𝑖)𝑈(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) & ⊢ (𝜑 → (𝑃‘𝑁) = 𝐼) & ⊢ (𝜑 → (𝑄‘𝑁) = 𝐽) & ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | madjusmdetlem2 33774* | Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑋)) | ||
Theorem | madjusmdetlem3 33775* | Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 27-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) | ||
Theorem | madjusmdetlem4 33776* | Lemma for madjusmdet 33777. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | madjusmdet 33777 | Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | mdetlap 33778* | Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) | ||
Theorem | ist0cld 33779* | The predicate "is a T0 space", using closed sets. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ (𝜑 → 𝐵 = ∪ 𝐽) & ⊢ (𝜑 → 𝐷 = (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∀𝑑 ∈ 𝐷 (𝑥 ∈ 𝑑 ↔ 𝑦 ∈ 𝑑) → 𝑥 = 𝑦)))) | ||
Theorem | txomap 33780* | Given two open maps 𝐹 and 𝐺, 𝐻 mapping pairs of sets, is also an open map for the product topology. (Contributed by Thierry Arnoux, 29-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑍) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑇) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑇)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐿) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 “ 𝑦) ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ (𝐽 ×t 𝐾)) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ⇒ ⊢ (𝜑 → (𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀)) | ||
Theorem | qtopt1 33781* | If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Fre) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) | ||
Theorem | qtophaus 33782* | If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ ∼ = (◡𝐹 ∘ 𝐹) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹)) & ⊢ (𝜑 → ∼ ∈ (Clsd‘(𝐽 ×t 𝐽))) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Haus) | ||
Theorem | circtopn 33783* | The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ (𝐽 qTop 𝐹) = (TopOpen‘(𝐹 “s ℝfld)) | ||
Theorem | circcn 33784* | The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) | ||
Theorem | reff 33785* | For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg 10557. (Contributed by Thierry Arnoux, 12-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐵 ↔ (∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑣 ∈ 𝐴 𝑣 ⊆ (𝑓‘𝑣))))) | ||
Theorem | locfinreflem 33786* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) | ||
Theorem | locfinref 33787* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) | ||
Syntax | ccref 33788 | The "every open cover has an 𝐴 refinement" predicate. |
class CovHasRef𝐴 | ||
Definition | df-cref 33789* | Define a statement "every open cover has an 𝐴 refinement" , where 𝐴 is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | ||
Theorem | iscref 33790* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) | ||
Theorem | crefeq 33791 | Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) | ||
Theorem | creftop 33792 | A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) | ||
Theorem | crefi 33793* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) | ||
Theorem | crefdf 33794* | A formulation of crefi 33793 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐵 = CovHasRef𝐴 & ⊢ (𝑧 ∈ 𝐴 → 𝜑) ⇒ ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) | ||
Theorem | crefss 33795 | The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) | ||
Theorem | cmpcref 33796 | Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ Comp = CovHasRefFin | ||
Theorem | cmpfiref 33797* | Every open cover of a Compact space has a finite refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ Fin ∧ 𝑣Ref𝑈)) | ||
Syntax | cldlf 33798 | Extend class notation with the class of all Lindelöf spaces. |
class Ldlf | ||
Definition | df-ldlf 33799 | Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of [BourbakiTop2] p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020.) |
⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | ||
Theorem | ldlfcntref 33800* | Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |