Detailed syntax breakdown of Definition df-sra
Step | Hyp | Ref
| Expression |
1 | | csra 20345 |
. 2
class
subringAlg |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vs |
. . . 4
setvar 𝑠 |
5 | 2 | cv 1538 |
. . . . . 6
class 𝑤 |
6 | | cbs 16840 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6418 |
. . . . 5
class
(Base‘𝑤) |
8 | 7 | cpw 4530 |
. . . 4
class 𝒫
(Base‘𝑤) |
9 | | cnx 16822 |
. . . . . . . . 9
class
ndx |
10 | | csca 16891 |
. . . . . . . . 9
class
Scalar |
11 | 9, 10 | cfv 6418 |
. . . . . . . 8
class
(Scalar‘ndx) |
12 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
13 | | cress 16867 |
. . . . . . . . 9
class
↾s |
14 | 5, 12, 13 | co 7255 |
. . . . . . . 8
class (𝑤 ↾s 𝑠) |
15 | 11, 14 | cop 4564 |
. . . . . . 7
class
〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉 |
16 | | csts 16792 |
. . . . . . 7
class
sSet |
17 | 5, 15, 16 | co 7255 |
. . . . . 6
class (𝑤 sSet 〈(Scalar‘ndx),
(𝑤 ↾s
𝑠)〉) |
18 | | cvsca 16892 |
. . . . . . . 8
class
·𝑠 |
19 | 9, 18 | cfv 6418 |
. . . . . . 7
class (
·𝑠 ‘ndx) |
20 | | cmulr 16889 |
. . . . . . . 8
class
.r |
21 | 5, 20 | cfv 6418 |
. . . . . . 7
class
(.r‘𝑤) |
22 | 19, 21 | cop 4564 |
. . . . . 6
class 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉 |
23 | 17, 22, 16 | co 7255 |
. . . . 5
class ((𝑤 sSet 〈(Scalar‘ndx),
(𝑤 ↾s
𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) |
24 | | cip 16893 |
. . . . . . 7
class
·𝑖 |
25 | 9, 24 | cfv 6418 |
. . . . . 6
class
(·𝑖‘ndx) |
26 | 25, 21 | cop 4564 |
. . . . 5
class
〈(·𝑖‘ndx),
(.r‘𝑤)〉 |
27 | 23, 26, 16 | co 7255 |
. . . 4
class (((𝑤 sSet 〈(Scalar‘ndx),
(𝑤 ↾s
𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉) |
28 | 4, 8, 27 | cmpt 5153 |
. . 3
class (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
(((𝑤 sSet
〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉)) |
29 | 2, 3, 28 | cmpt 5153 |
. 2
class (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
(((𝑤 sSet
〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉))) |
30 | 1, 29 | wceq 1539 |
1
wff subringAlg
= (𝑤 ∈ V ↦
(𝑠 ∈ 𝒫
(Base‘𝑤) ↦
(((𝑤 sSet
〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉))) |