Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rgmod | Structured version Visualization version GIF version |
Description: Any ring can be regarded as a left algebra over itself. The function ringLMod associates with any ring the left algebra consisting in the ring itself regarded as a left algebra over itself. It has an inner product which is simply the ring product. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
Ref | Expression |
---|---|
df-rgmod | ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crglmod 20440 | . 2 class ringLMod | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3433 | . . 3 class V | |
4 | 2 | cv 1538 | . . . . 5 class 𝑤 |
5 | cbs 16921 | . . . . 5 class Base | |
6 | 4, 5 | cfv 6437 | . . . 4 class (Base‘𝑤) |
7 | csra 20439 | . . . . 5 class subringAlg | |
8 | 4, 7 | cfv 6437 | . . . 4 class (subringAlg ‘𝑤) |
9 | 6, 8 | cfv 6437 | . . 3 class ((subringAlg ‘𝑤)‘(Base‘𝑤)) |
10 | 2, 3, 9 | cmpt 5158 | . 2 class (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
11 | 1, 10 | wceq 1539 | 1 wff ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
Colors of variables: wff setvar class |
This definition is referenced by: rlmfn 20469 rlmval 20470 |
Copyright terms: Public domain | W3C validator |