| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rgmod | Structured version Visualization version GIF version | ||
| Description: Any ring can be regarded as a left algebra over itself. The function ringLMod associates with any ring the left algebra consisting in the ring itself regarded as a left algebra over itself. It has an inner product which is simply the ring product. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| df-rgmod | ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crglmod 21171 | . 2 class ringLMod | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑤 |
| 5 | cbs 17247 | . . . . 5 class Base | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (Base‘𝑤) |
| 7 | csra 21170 | . . . . 5 class subringAlg | |
| 8 | 4, 7 | cfv 6561 | . . . 4 class (subringAlg ‘𝑤) |
| 9 | 6, 8 | cfv 6561 | . . 3 class ((subringAlg ‘𝑤)‘(Base‘𝑤)) |
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
| 11 | 1, 10 | wceq 1540 | 1 wff ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rlmfn 21197 rlmval 21198 |
| Copyright terms: Public domain | W3C validator |