![]() |
Metamath
Proof Explorer Theorem List (p. 210 of 483) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30721) |
![]() (30722-32244) |
![]() (32245-48232) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-lmim 20901* | An isomorphism of modules is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group and scalar operations. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) | ||
Definition | df-lmic 20902 | Two modules are said to be isomorphic iff they are connected by at least one isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ≃𝑚 = (◡ LMIso “ (V ∖ 1o)) | ||
Theorem | reldmlmhm 20903 | Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ Rel dom LMHom | ||
Theorem | lmimfn 20904 | Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ LMIso Fn (LMod × LMod) | ||
Theorem | islmhm 20905* | Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | ||
Theorem | islmhm3 20906* | Property of a module homomorphism, similar to ismhm 18735. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | ||
Theorem | lmhmlem 20907 | Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) | ||
Theorem | lmhmsca 20908 | A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) | ||
Theorem | lmghm 20909 | A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | lmhmlmod2 20910 | A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | ||
Theorem | lmhmlmod1 20911 | A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | ||
Theorem | lmhmf 20912 | A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) | ||
Theorem | lmhmlin 20913 | A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) | ||
Theorem | lmodvsinv 20914 | Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝑀 = (invg‘𝐹) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑅) · 𝑋) = (𝑁‘(𝑅 · 𝑋))) | ||
Theorem | lmodvsinv2 20915 | Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) = (𝑁‘(𝑅 · 𝑋))) | ||
Theorem | islmhm2 20916* | A one-equation proof of linearity of a left module homomorphism, similar to df-lss 20809. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐸 = (Base‘𝐾) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))))) | ||
Theorem | islmhmd 20917* | Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) & ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐽 = (Scalar‘𝑇) & ⊢ 𝑁 = (Base‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐽 = 𝐾) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
Theorem | 0lmhm 20918 | The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 0 = (0g‘𝑁) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑇 = (Scalar‘𝑁) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) | ||
Theorem | idlmhm 20919 | The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) | ||
Theorem | invlmhm 20920 | The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐼 = (invg‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐼 ∈ (𝑀 LMHom 𝑀)) | ||
Theorem | lmhmco 20921 | The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘ 𝐺) ∈ (𝑀 LMHom 𝑂)) | ||
Theorem | lmhmplusg 20922 | The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ + = (+g‘𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 LMHom 𝑁)) | ||
Theorem | lmhmvsca 20923 | The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑁) & ⊢ 𝐽 = (Scalar‘𝑁) & ⊢ 𝐾 = (Base‘𝐽) ⇒ ⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁)) | ||
Theorem | lmhmf1o 20924 | A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) | ||
Theorem | lmhmima 20925 | The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑋 = (LSubSp‘𝑆) & ⊢ 𝑌 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (𝐹 “ 𝑈) ∈ 𝑌) | ||
Theorem | lmhmpreima 20926 | The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑋 = (LSubSp‘𝑆) & ⊢ 𝑌 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (◡𝐹 “ 𝑈) ∈ 𝑋) | ||
Theorem | lmhmlsp 20927 | Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐾 = (LSpan‘𝑆) & ⊢ 𝐿 = (LSpan‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ (𝐾‘𝑈)) = (𝐿‘(𝐹 “ 𝑈))) | ||
Theorem | lmhmrnlss 20928 | The range of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇)) | ||
Theorem | lmhmkerlss 20929 | The kernel of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝑈 = (LSubSp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ 𝑈) | ||
Theorem | reslmhm 20930 | Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ 𝑅 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝑈) → (𝐹 ↾ 𝑋) ∈ (𝑅 LMHom 𝑇)) | ||
Theorem | reslmhm2 20931 | Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) & ⊢ 𝐿 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
Theorem | reslmhm2b 20932 | Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) & ⊢ 𝐿 = (LSubSp‘𝑇) ⇒ ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈))) | ||
Theorem | lmhmeql 20933 | The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝑈 = (LSubSp‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ 𝑈) | ||
Theorem | lspextmo 20934* | A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐾 = (LSpan‘𝑆) ⇒ ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹) | ||
Theorem | pwsdiaglmhm 20935* | Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) | ||
Theorem | pwssplit0 20936* | Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) | ||
Theorem | pwssplit1 20937* | Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵–onto→𝐶) | ||
Theorem | pwssplit2 20938* | Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍)) | ||
Theorem | pwssplit3 20939* | Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) | ||
Theorem | islmim 20940 | An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
Theorem | lmimf1o 20941 | An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | lmimlmhm 20942 | An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) | ||
Theorem | lmimgim 20943 | An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) | ||
Theorem | islmim2 20944 | An isomorphism of left modules is a homomorphism whose converse is a homomorphism. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 LMHom 𝑅))) | ||
Theorem | lmimcnv 20945 | The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) | ||
Theorem | brlmic 20946 | The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | ||
Theorem | brlmici 20947 | Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑆) | ||
Theorem | lmiclcl 20948 | Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 → 𝑅 ∈ LMod) | ||
Theorem | lmicrcl 20949 | Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) | ||
Theorem | lmicsym 20950 | Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ≃𝑚 𝑅) | ||
Theorem | lmhmpropd 20951* | Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐽)) & ⊢ (𝜑 → 𝐺 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ (𝜑 → 𝐺 = (Scalar‘𝑀)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ 𝑄 = (Base‘𝐺) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐽)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀)) | ||
Syntax | clbs 20952 | Extend class notation with the set of bases for a vector space. |
class LBasis | ||
Definition | df-lbs 20953* | Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑠]((𝑛‘𝑏) = (Base‘𝑤) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑦( ·𝑠 ‘𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))}) | ||
Theorem | islbs 20954* | The predicate "𝐵 is a basis for the left module or vector space 𝑊". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) | ||
Theorem | lbsss 20955 | A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) | ||
Theorem | lbsel 20956 | An element of a basis is a vector. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ 𝑉) | ||
Theorem | lbssp 20957 | The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) | ||
Theorem | lbsind 20958 | A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) | ||
Theorem | lbsind2 20959 | A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 12-Jan-2015.) |
⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ 𝐸 ∈ (𝑁‘(𝐵 ∖ {𝐸}))) | ||
Theorem | lbspss 20960 | No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.) |
⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵) → (𝑁‘𝐶) ≠ 𝑉) | ||
Theorem | lsmcl 20961 | The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) | ||
Theorem | lsmspsn 20962* | Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) | ||
Theorem | lsmelval2 20963* | Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) | ||
Theorem | lsmsp 20964 | Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) | ||
Theorem | lsmsp2 20965 | Subspace sum of spans of subsets is the span of their union. (spanuni 31347 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) | ||
Theorem | lsmssspx 20966 | Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑇 ⊆ 𝑉) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) | ||
Theorem | lsmpr 20967 | The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
Theorem | lsppreli 20968 | A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lsmelpr 20969 | Two ways to say that a vector belongs to the span of a pair of vectors. (Contributed by NM, 14-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})))) | ||
Theorem | lsppr0 20970 | The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋})) | ||
Theorem | lsppr 20971* | Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) | ||
Theorem | lspprel 20972* | Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))) | ||
Theorem | lspprabs 20973 | Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lspvadd 20974 | The span of a vector sum is included in the span of its arguments. (Contributed by NM, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lspsntri 20975 | Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
Theorem | lspsntrim 20976 | Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
Theorem | lbspropd 20977* | If two structures have the same components (properties), they have the same set of bases. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) | ||
Theorem | pj1lmhm 20978 | The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (proj1‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) | ||
Theorem | pj1lmhm2 20979 | The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (proj1‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) | ||
Syntax | clvec 20980 | Extend class notation with class of all left vector spaces. |
class LVec | ||
Definition | df-lvec 20981 | Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013.) |
⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | ||
Theorem | islvec 20982 | The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) | ||
Theorem | lvecdrng 20983 | The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) | ||
Theorem | lveclmod 20984 | A left vector space is a left module. (Contributed by NM, 9-Dec-2013.) |
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | ||
Theorem | lveclmodd 20985 | A vector space is a left module. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) | ||
Theorem | lvecgrpd 20986 | A vector space is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) | ||
Theorem | lsslvec 20987 | A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LVec) | ||
Theorem | lmhmlvec 20988 | The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) | ||
Theorem | lvecvs0or 20989 | If a scalar product is zero, one of its factors must be zero. (hvmul0or 30828 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂 ∨ 𝑋 = 0 ))) | ||
Theorem | lvecvsn0 20990 | A scalar product is nonzero iff both of its factors are nonzero. (Contributed by NM, 3-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) ≠ 0 ↔ (𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ))) | ||
Theorem | lssvs0or 20991 | If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0 ∨ 𝑋 ∈ 𝑈))) | ||
Theorem | lvecvscan 20992 | Cancellation law for scalar multiplication. (hvmulcan 30875 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | lvecvscan2 20993 | Cancellation law for scalar multiplication. (hvmulcan2 30876 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) | ||
Theorem | lvecinv 20994 | Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝐼 = (invr‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) | ||
Theorem | lspsnvs 20995 | A nonzero scalar product does not change the span of a singleton. (spansncol 31371 analog.) (Contributed by NM, 23-Apr-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) | ||
Theorem | lspsneleq 20996 | Membership relation that implies equality of spans. (spansneleq 31373 analog.) (Contributed by NM, 4-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) | ||
Theorem | lspsncmp 20997 | Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | ||
Theorem | lspsnne1 20998 | Two ways to express that vectors have different spans. (Contributed by NM, 28-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) | ||
Theorem | lspsnne2 20999 | Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | ||
Theorem | lspsnnecom 21000 | Swap two vectors with different spans. (Contributed by NM, 20-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑋})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |