| Metamath
Proof Explorer Theorem List (p. 210 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ellspsn5b 20901 | Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) | ||
| Theorem | ellspsn5 20902 | Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) | ||
| Theorem | lspprid1 20903 | A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | lspprid2 20904 | A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | lspprvacl 20905 | The sum of two vectors belongs to their span. (Contributed by NM, 20-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | lssats2 20906* | A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) | ||
| Theorem | ellspsni 20907 | A scalar product with a vector belongs to the span of its singleton. (spansnmul 31493 analog.) (Contributed by NM, 2-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) | ||
| Theorem | lspsn 20908* | Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) | ||
| Theorem | ellspsn 20909* | Member of span of the singleton of a vector. (elspansn 31495 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) | ||
| Theorem | lspsnvsi 20910 | Span of a scalar product of a singleton. (Contributed by NM, 23-Apr-2014.) (Proof shortened by Mario Carneiro, 4-Sep-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) | ||
| Theorem | lspsnss2 20911* | Comparable spans of singletons must have proportional vectors. See lspsneq 21032 for equal span version. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) | ||
| Theorem | lspsnneg 20912 | Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑀 = (invg‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑀‘𝑋)}) = (𝑁‘{𝑋})) | ||
| Theorem | lspsnsub 20913 | Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑌 − 𝑋)})) | ||
| Theorem | lspsn0 20914 | Span of the singleton of the zero vector. (spansn0 31470 analog.) (Contributed by NM, 15-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) | ||
| Theorem | lsp0 20915 | Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑁‘∅) = { 0 }) | ||
| Theorem | lspuni0 20916 | Union of the span of the empty set. (Contributed by NM, 14-Mar-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∪ (𝑁‘∅) = 0 ) | ||
| Theorem | lspun0 20917 | The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) | ||
| Theorem | lspsneq0 20918 | Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) | ||
| Theorem | lspsneq0b 20919 | Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | lmodindp1 20920 | Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) | ||
| Theorem | lsslsp 20921 | Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑀 = (LSpan‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑋) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) = (𝑀‘𝐺)) | ||
| Theorem | lsslspOLD 20922 | Obsolete version of lsslsp 20921 as of 25-Apr-2025. Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) TODO: Shouldn't we swap 𝑀‘𝐺 and 𝑁‘𝐺 since we are computing a property of 𝑁‘𝐺? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015. (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑀 = (LSpan‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑋) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) = (𝑁‘𝐺)) | ||
| Theorem | lss0v 20923 | The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑍 = (0g‘𝑋) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) | ||
| Theorem | lsspropd 20924* | If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) ⇒ ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) | ||
| Theorem | lsppropd 20925* | If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) | ||
| Syntax | clmhm 20926 | Extend class notation with the generator of left module hom-sets. |
| class LMHom | ||
| Syntax | clmim 20927 | The class of left module isomorphism sets. |
| class LMIso | ||
| Syntax | clmic 20928 | The class of the left module isomorphism relation. |
| class ≃𝑚 | ||
| Definition | df-lmhm 20929* | A homomorphism of left modules is a group homomorphism which additionally preserves the scalar product. This requires both structures to be left modules over the same ring. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠 ‘𝑠)𝑦)) = (𝑥( ·𝑠 ‘𝑡)(𝑓‘𝑦)))}) | ||
| Definition | df-lmim 20930* | An isomorphism of modules is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group and scalar operations. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| ⊢ LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) | ||
| Definition | df-lmic 20931 | Two modules are said to be isomorphic iff they are connected by at least one isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ ≃𝑚 = (◡ LMIso “ (V ∖ 1o)) | ||
| Theorem | reldmlmhm 20932 | Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ Rel dom LMHom | ||
| Theorem | lmimfn 20933 | Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ LMIso Fn (LMod × LMod) | ||
| Theorem | islmhm 20934* | Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | ||
| Theorem | islmhm3 20935* | Property of a module homomorphism, similar to ismhm 18712. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | ||
| Theorem | lmhmlem 20936 | Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) | ||
| Theorem | lmhmsca 20937 | A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) | ||
| Theorem | lmghm 20938 | A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | lmhmlmod2 20939 | A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | ||
| Theorem | lmhmlmod1 20940 | A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | ||
| Theorem | lmhmf 20941 | A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) | ||
| Theorem | lmhmlin 20942 | A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐸 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) | ||
| Theorem | lmodvsinv 20943 | Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝑀 = (invg‘𝐹) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑅) · 𝑋) = (𝑁‘(𝑅 · 𝑋))) | ||
| Theorem | lmodvsinv2 20944 | Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) = (𝑁‘(𝑅 · 𝑋))) | ||
| Theorem | islmhm2 20945* | A one-equation proof of linearity of a left module homomorphism, similar to df-lss 20838. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐿 = (Scalar‘𝑇) & ⊢ 𝐸 = (Base‘𝐾) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) ⇒ ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))))) | ||
| Theorem | islmhmd 20946* | Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ × = ( ·𝑠 ‘𝑇) & ⊢ 𝐾 = (Scalar‘𝑆) & ⊢ 𝐽 = (Scalar‘𝑇) & ⊢ 𝑁 = (Base‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐽 = 𝐾) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
| Theorem | 0lmhm 20947 | The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 0 = (0g‘𝑁) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑇 = (Scalar‘𝑁) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) | ||
| Theorem | idlmhm 20948 | The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) | ||
| Theorem | invlmhm 20949 | The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐼 = (invg‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐼 ∈ (𝑀 LMHom 𝑀)) | ||
| Theorem | lmhmco 20950 | The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘ 𝐺) ∈ (𝑀 LMHom 𝑂)) | ||
| Theorem | lmhmplusg 20951 | The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ + = (+g‘𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 LMHom 𝑁)) | ||
| Theorem | lmhmvsca 20952 | The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑁) & ⊢ 𝐽 = (Scalar‘𝑁) & ⊢ 𝐾 = (Base‘𝐽) ⇒ ⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁)) | ||
| Theorem | lmhmf1o 20953 | A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) | ||
| Theorem | lmhmima 20954 | The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑋 = (LSubSp‘𝑆) & ⊢ 𝑌 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (𝐹 “ 𝑈) ∈ 𝑌) | ||
| Theorem | lmhmpreima 20955 | The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑋 = (LSubSp‘𝑆) & ⊢ 𝑌 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (◡𝐹 “ 𝑈) ∈ 𝑋) | ||
| Theorem | lmhmlsp 20956 | Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐾 = (LSpan‘𝑆) & ⊢ 𝐿 = (LSpan‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ (𝐾‘𝑈)) = (𝐿‘(𝐹 “ 𝑈))) | ||
| Theorem | lmhmrnlss 20957 | The range of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇)) | ||
| Theorem | lmhmkerlss 20958 | The kernel of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝑈 = (LSubSp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ 𝑈) | ||
| Theorem | reslmhm 20959 | Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ 𝑅 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝑈) → (𝐹 ↾ 𝑋) ∈ (𝑅 LMHom 𝑇)) | ||
| Theorem | reslmhm2 20960 | Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) & ⊢ 𝐿 = (LSubSp‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | ||
| Theorem | reslmhm2b 20961 | Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) & ⊢ 𝐿 = (LSubSp‘𝑇) ⇒ ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈))) | ||
| Theorem | lmhmeql 20962 | The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ 𝑈) | ||
| Theorem | lspextmo 20963* | A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐾 = (LSpan‘𝑆) ⇒ ⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹) | ||
| Theorem | pwsdiaglmhm 20964* | Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) | ||
| Theorem | pwssplit0 20965* | Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) | ||
| Theorem | pwssplit1 20966* | Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵–onto→𝐶) | ||
| Theorem | pwssplit2 20967* | Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍)) | ||
| Theorem | pwssplit3 20968* | Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s 𝑈) & ⊢ 𝑍 = (𝑊 ↑s 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) | ||
| Theorem | islmim 20969 | An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
| Theorem | lmimf1o 20970 | An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Theorem | lmimlmhm 20971 | An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) | ||
| Theorem | lmimgim 20972 | An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) | ||
| Theorem | islmim2 20973 | An isomorphism of left modules is a homomorphism whose converse is a homomorphism. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 LMHom 𝑅))) | ||
| Theorem | lmimcnv 20974 | The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → ◡𝐹 ∈ (𝑇 LMIso 𝑆)) | ||
| Theorem | brlmic 20975 | The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | ||
| Theorem | brlmici 20976 | Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝑅 ≃𝑚 𝑆) | ||
| Theorem | lmiclcl 20977 | Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝑅 ≃𝑚 𝑆 → 𝑅 ∈ LMod) | ||
| Theorem | lmicrcl 20978 | Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) | ||
| Theorem | lmicsym 20979 | Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ≃𝑚 𝑅) | ||
| Theorem | lmhmpropd 20980* | Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐽)) & ⊢ (𝜑 → 𝐺 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ (𝜑 → 𝐺 = (Scalar‘𝑀)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ 𝑄 = (Base‘𝐺) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐽)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀)) | ||
| Syntax | clbs 20981 | Extend class notation with the set of bases for a vector space. |
| class LBasis | ||
| Definition | df-lbs 20982* | Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| ⊢ LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑠]((𝑛‘𝑏) = (Base‘𝑤) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑦( ·𝑠 ‘𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))}) | ||
| Theorem | islbs 20983* | The predicate "𝐵 is a basis for the left module or vector space 𝑊". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) | ||
| Theorem | lbsss 20984 | A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) | ||
| Theorem | lbsel 20985 | An element of a basis is a vector. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ 𝑉) | ||
| Theorem | lbssp 20986 | The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) | ||
| Theorem | lbsind 20987 | A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) | ||
| Theorem | lbsind2 20988 | A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 12-Jan-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ 𝐸 ∈ (𝑁‘(𝐵 ∖ {𝐸}))) | ||
| Theorem | lbspss 20989 | No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵) → (𝑁‘𝐶) ≠ 𝑉) | ||
| Theorem | lsmcl 20990 | The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) | ||
| Theorem | lsmspsn 20991* | Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) | ||
| Theorem | lsmelval2 20992* | Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) | ||
| Theorem | lsmsp 20993 | Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) | ||
| Theorem | lsmsp2 20994 | Subspace sum of spans of subsets is the span of their union. (spanuni 31473 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) | ||
| Theorem | lsmssspx 20995 | Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑇 ⊆ 𝑉) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) | ||
| Theorem | lsmpr 20996 | The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
| Theorem | lsppreli 20997 | A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | lsmelpr 20998 | Two ways to say that a vector belongs to the span of a pair of vectors. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})))) | ||
| Theorem | lsppr0 20999 | The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋})) | ||
| Theorem | lsppr 21000* | Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |