HomeHome Metamath Proof Explorer
Theorem List (p. 210 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 20901-21000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremuvcfval 20901* Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
 
Theoremuvcval 20902* Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
 
Theoremuvcvval 20903 Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
 
Theoremuvcvvcl 20904 A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) ∈ { 0 , 1 })
 
Theoremuvcvvcl2 20905 A unit vector coordinate is a ring element. (Contributed by Stefan O'Rear, 3-Feb-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑊)    &   (𝜑𝐽𝐼)    &   (𝜑𝐾𝐼)       (𝜑 → ((𝑈𝐽)‘𝐾) ∈ 𝐵)
 
Theoremuvcvv1 20906 The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &   (𝜑𝑅𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝐽𝐼)    &    1 = (1r𝑅)       (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )
 
Theoremuvcvv0 20907 The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &   (𝜑𝑅𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝐽𝐼)    &   (𝜑𝐾𝐼)    &   (𝜑𝐽𝐾)    &    0 = (0g𝑅)       (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )
 
Theoremuvcff 20908 Domain and range of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝑌 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝑌)       ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
 
Theoremuvcf1 20909 In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝑌 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝑌)       ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)
 
Theoremuvcresum 20910 Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝑌 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝑌)    &    · = ( ·𝑠𝑌)       ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋f · 𝑈)))
 
Theoremfrlmssuvc1 20911* A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝑈 = (𝑅 unitVec 𝐼)    &   𝐵 = (Base‘𝐹)    &   𝐾 = (Base‘𝑅)    &    · = ( ·𝑠𝐹)    &    0 = (0g𝑅)    &   𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝐼)    &   (𝜑𝐿𝐽)    &   (𝜑𝑋𝐾)       (𝜑 → (𝑋 · (𝑈𝐿)) ∈ 𝐶)
 
Theoremfrlmssuvc2 20912* A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝑈 = (𝑅 unitVec 𝐼)    &   𝐵 = (Base‘𝐹)    &   𝐾 = (Base‘𝑅)    &    · = ( ·𝑠𝐹)    &    0 = (0g𝑅)    &   𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝐼)    &   (𝜑𝐿 ∈ (𝐼𝐽))    &   (𝜑𝑋 ∈ (𝐾 ∖ { 0 }))       (𝜑 → ¬ (𝑋 · (𝑈𝐿)) ∈ 𝐶)
 
Theoremfrlmsslsp 20913* A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.)
𝑌 = (𝑅 freeLMod 𝐼)    &   𝑈 = (𝑅 unitVec 𝐼)    &   𝐾 = (LSpan‘𝑌)    &   𝐵 = (Base‘𝑌)    &    0 = (0g𝑅)    &   𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}       ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
 
Theoremfrlmlbs 20914 The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝑈 = (𝑅 unitVec 𝐼)    &   𝐽 = (LBasis‘𝐹)       ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)
 
Theoremfrlmup1 20915* Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝐹)    &   𝐶 = (Base‘𝑇)    &    · = ( ·𝑠𝑇)    &   𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))    &   (𝜑𝑇 ∈ LMod)    &   (𝜑𝐼𝑋)    &   (𝜑𝑅 = (Scalar‘𝑇))    &   (𝜑𝐴:𝐼𝐶)       (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
 
Theoremfrlmup2 20916* The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝐹)    &   𝐶 = (Base‘𝑇)    &    · = ( ·𝑠𝑇)    &   𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))    &   (𝜑𝑇 ∈ LMod)    &   (𝜑𝐼𝑋)    &   (𝜑𝑅 = (Scalar‘𝑇))    &   (𝜑𝐴:𝐼𝐶)    &   (𝜑𝑌𝐼)    &   𝑈 = (𝑅 unitVec 𝐼)       (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
 
Theoremfrlmup3 20917* The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝐹)    &   𝐶 = (Base‘𝑇)    &    · = ( ·𝑠𝑇)    &   𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))    &   (𝜑𝑇 ∈ LMod)    &   (𝜑𝐼𝑋)    &   (𝜑𝑅 = (Scalar‘𝑇))    &   (𝜑𝐴:𝐼𝐶)    &   𝐾 = (LSpan‘𝑇)       (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴))
 
Theoremfrlmup4 20918* Universal property of the free module by existential uniqueness. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝑅 = (Scalar‘𝑇)    &   𝐹 = (𝑅 freeLMod 𝐼)    &   𝑈 = (𝑅 unitVec 𝐼)    &   𝐶 = (Base‘𝑇)       ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴)
 
Theoremellspd 20919* The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.)
𝑁 = (LSpan‘𝑀)    &   𝐵 = (Base‘𝑀)    &   𝐾 = (Base‘𝑆)    &   𝑆 = (Scalar‘𝑀)    &    0 = (0g𝑆)    &    · = ( ·𝑠𝑀)    &   (𝜑𝐹:𝐼𝐵)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝐼𝑉)       (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
 
Theoremelfilspd 20920* Simplified version of ellspd 20919 when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
𝑁 = (LSpan‘𝑀)    &   𝐵 = (Base‘𝑀)    &   𝐾 = (Base‘𝑆)    &   𝑆 = (Scalar‘𝑀)    &    0 = (0g𝑆)    &    · = ( ·𝑠𝑀)    &   (𝜑𝐹:𝐼𝐵)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝐼 ∈ Fin)       (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
 
11.1.4  Independent sets and families

According to the definition in [Lang] p. 129: "A subset S of a module M is said to be linearly independent (over A) if whenever we have a linear combination ∑x∈Saxx which is equal to 0, then ax = 0 for all x ∈ S", and according to the Definition in [Lang] p. 130: "a familiy {xi}i∈I of elements of M is said to be linearly independent (over A) if whenever we have a linear combination ∑i∈Iaixi = 0, then ai = 0 for all i ∈ I." These definitions correspond to Definitions df-linds 20924 and df-lindf 20923 respectively, where it is claimed that a nonzero summand can be extracted (∑i∈{I\{j}}aixi = -ajxj) and be represented as a linear combination of the remaining elements of the family.

 
Syntaxclindf 20921 The class relationship of independent families in a module.
class LIndF
 
Syntaxclinds 20922 The class generator of independent sets in a module.
class LIndS
 
Definitiondf-lindf 20923* An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 20943, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 20955) and only one representation for each element of the range (islindf5 20956). (Contributed by Stefan O'Rear, 24-Feb-2015.)

LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
 
Definitiondf-linds 20924* An independent set is a set which is independent as a family. See also islinds3 20951 and islinds4 20952. (Contributed by Stefan O'Rear, 24-Feb-2015.)
LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤})
 
Theoremrellindf 20925 The independent-family predicate is a proper relation and can be used with brrelex1i 5634. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Rel LIndF
 
Theoremislinds 20926 Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑊)       (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
 
Theoremlinds1 20927 An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑊)       (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)
 
Theoremlinds2 20928 An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
(𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊)
 
Theoremislindf 20929* Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (LSpan‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝑁 = (Base‘𝑆)    &    0 = (0g𝑆)       ((𝑊𝑌𝐹𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
 
Theoremislinds2 20930* Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (LSpan‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝑁 = (Base‘𝑆)    &    0 = (0g𝑆)       (𝑊𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹𝐵 ∧ ∀𝑥𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥})))))
 
Theoremislindf2 20931* Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐵 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (LSpan‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝑁 = (Base‘𝑆)    &    0 = (0g𝑆)       ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
 
Theoremlindff 20932 Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑊)       ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹:dom 𝐹𝐵)
 
Theoremlindfind 20933 A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
· = ( ·𝑠𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐿 = (Scalar‘𝑊)    &    0 = (0g𝐿)    &   𝐾 = (Base‘𝐿)       (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
 
Theoremlindsind 20934 A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
· = ( ·𝑠𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐿 = (Scalar‘𝑊)    &    0 = (0g𝐿)    &   𝐾 = (Base‘𝐿)       (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))
 
Theoremlindfind2 20935 In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐾 = (LSpan‘𝑊)    &   𝐿 = (Scalar‘𝑊)       (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ¬ (𝐹𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
 
Theoremlindsind2 20936 In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐾 = (LSpan‘𝑊)    &   𝐿 = (Scalar‘𝑊)       (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))
 
Theoremlindff1 20937 A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑊)    &   𝐿 = (Scalar‘𝑊)       ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)
 
Theoremlindfrn 20938 The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
 
Theoremf1lindf 20939 Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)
 
Theoremlindfres 20940 Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)
 
Theoremlindsss 20941 Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))
 
Theoremf1linds 20942 A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.)
((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)
 
Theoremislindf3 20943 In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐿 = (Scalar‘𝑊)       ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊))))
 
Theoremlindfmm 20944 Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)       ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
 
Theoremlindsmm 20945 Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)       ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))
 
Theoremlindsmm2 20946 The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)       ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹 ∈ (LIndS‘𝑆)) → (𝐺𝐹) ∈ (LIndS‘𝑇))
 
Theoremlsslindf 20947 Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
𝑈 = (LSubSp‘𝑊)    &   𝑋 = (𝑊s 𝑆)       ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
 
Theoremlsslinds 20948 Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝑈 = (LSubSp‘𝑊)    &   𝑋 = (𝑊s 𝑆)       ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))
 
Theoremislbs4 20949 A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) 𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝐾 = (LSpan‘𝑊)       (𝑋𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾𝑋) = 𝐵))
 
Theoremlbslinds 20950 A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐽 = (LBasis‘𝑊)       𝐽 ⊆ (LIndS‘𝑊)
 
Theoremislinds3 20951 A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.)
𝐵 = (Base‘𝑊)    &   𝐾 = (LSpan‘𝑊)    &   𝑋 = (𝑊s (𝐾𝑌))    &   𝐽 = (LBasis‘𝑋)       (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))
 
Theoremislinds4 20952* A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐽 = (LBasis‘𝑊)       (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
 
11.1.5  Characterization of free modules
 
Theoremlmimlbs 20953 The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐽 = (LBasis‘𝑆)    &   𝐾 = (LBasis‘𝑇)       ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)
 
Theoremlmiclbs 20954 Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐽 = (LBasis‘𝑆)    &   𝐾 = (LBasis‘𝑇)       (𝑆𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
 
Theoremislindf4 20955* A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.)
𝐵 = (Base‘𝑊)    &   𝑅 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &    0 = (0g𝑊)    &   𝑌 = (0g𝑅)    &   𝐿 = (Base‘(𝑅 freeLMod 𝐼))       ((𝑊 ∈ LMod ∧ 𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐿 ((𝑊 Σg (𝑥f · 𝐹)) = 0𝑥 = (𝐼 × {𝑌}))))
 
Theoremislindf5 20956* A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝐹)    &   𝐶 = (Base‘𝑇)    &    · = ( ·𝑠𝑇)    &   𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))    &   (𝜑𝑇 ∈ LMod)    &   (𝜑𝐼𝑋)    &   (𝜑𝑅 = (Scalar‘𝑇))    &   (𝜑𝐴:𝐼𝐶)       (𝜑 → (𝐴 LIndF 𝑇𝐸:𝐵1-1𝐶))
 
Theoremindlcim 20957* An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝐹)    &   𝐶 = (Base‘𝑇)    &    · = ( ·𝑠𝑇)    &   𝑁 = (LSpan‘𝑇)    &   𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))    &   (𝜑𝑇 ∈ LMod)    &   (𝜑𝐼𝑋)    &   (𝜑𝑅 = (Scalar‘𝑇))    &   (𝜑𝐴:𝐼onto𝐽)    &   (𝜑𝐴 LIndF 𝑇)    &   (𝜑 → (𝑁𝐽) = 𝐶)       (𝜑𝐸 ∈ (𝐹 LMIso 𝑇))
 
Theoremlbslcic 20958 A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐽 = (LBasis‘𝑊)       ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
 
Theoremlmisfree 20959* A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 20342 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.)
𝐽 = (LBasis‘𝑊)    &   𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘)))
 
Theoremlvecisfrlm 20960* Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LVec → ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘))
 
Theoremlmimco 20961 The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.)
((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
 
Theoremlmictra 20962 Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.)
((𝑅𝑚 𝑆𝑆𝑚 𝑇) → 𝑅𝑚 𝑇)
 
Theoremuvcf1o 20963 In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019.)
𝑈 = (𝑅 unitVec 𝐼)       ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1-onto→ran 𝑈)
 
Theoremuvcendim 20964 In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019.)
𝑈 = (𝑅 unitVec 𝐼)       ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝐼 ≈ ran 𝑈)
 
Theoremfrlmisfrlm 20965 A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.)
((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽))
 
Theoremfrlmiscvec 20966 Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019.)
((𝑅 ∈ NzRing ∧ 𝐼𝑌) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod (𝐼 × {∅})))
 
11.2  Associative algebras
 
11.2.1  Definition and basic properties
 
Syntaxcasa 20967 Associative algebra.
class AssAlg
 
Syntaxcasp 20968 Algebraic span function.
class AlgSpan
 
Syntaxcascl 20969 Class of algebra scalar injection function.
class algSc
 
Definitiondf-assa 20970* Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a (commutative) ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014.)
AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))))}
 
Definitiondf-asp 20971* Define the algebraic span of a set of vectors in an algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
 
Definitiondf-ascl 20972* Every unital algebra contains a canonical homomorphic image of its ring of scalars as scalar multiples of the unit. This names the homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015.)
algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))))
 
Theoremisassa 20973* The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &    × = (.r𝑊)       (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
 
Theoremassalem 20974 The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &    × = (.r𝑊)       ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
 
Theoremassaass 20975 Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &    × = (.r𝑊)       ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
 
Theoremassaassr 20976 Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &    × = (.r𝑊)       ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))
 
Theoremassalmod 20977 An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.)
(𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
 
Theoremassaring 20978 An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.)
(𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
 
Theoremassasca 20979 An associative algebra's scalar field is a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
 
Theoremassa2ass 20980 Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    = (.r𝐹)    &    · = ( ·𝑠𝑊)    &    × = (.r𝑊)       ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝐶𝐵) ∧ (𝑋𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 𝐴) · (𝑋 × 𝑌)))
 
Theoremisassad 20981* Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.)
(𝜑𝑉 = (Base‘𝑊))    &   (𝜑𝐹 = (Scalar‘𝑊))    &   (𝜑𝐵 = (Base‘𝐹))    &   (𝜑· = ( ·𝑠𝑊))    &   (𝜑× = (.r𝑊))    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑊 ∈ Ring)    &   (𝜑𝐹 ∈ CRing)    &   ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))    &   ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))       (𝜑𝑊 ∈ AssAlg)
 
Theoremissubassa3 20982 A subring that is also a subspace is a subalgebra. The key theorem is islss3 20136. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑆 = (𝑊s 𝐴)    &   𝐿 = (LSubSp‘𝑊)       ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)
 
Theoremissubassa 20983 The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.)
𝑆 = (𝑊s 𝐴)    &   𝐿 = (LSubSp‘𝑊)    &   𝑉 = (Base‘𝑊)    &    1 = (1r𝑊)       ((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)))
 
Theoremsraassa 20984 The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝐴 = ((subringAlg ‘𝑊)‘𝑆)       ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg)
 
Theoremrlmassa 20985 The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.)
(𝑅 ∈ CRing → (ringLMod‘𝑅) ∈ AssAlg)
 
Theoremassapropd 20986* If two structures have the same components (properties), one is an associative algebra iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐹 = (Scalar‘𝐾))    &   (𝜑𝐹 = (Scalar‘𝐿))    &   𝑃 = (Base‘𝐹)    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))
 
Theoremaspval 20987* Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐴 = (AlgSpan‘𝑊)    &   𝑉 = (Base‘𝑊)    &   𝐿 = (LSubSp‘𝑊)       ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
 
Theoremasplss 20988 The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐴 = (AlgSpan‘𝑊)    &   𝑉 = (Base‘𝑊)    &   𝐿 = (LSubSp‘𝑊)       ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) ∈ 𝐿)
 
Theoremaspid 20989 The algebraic span of a subalgebra is itself. (spanid 29610 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐴 = (AlgSpan‘𝑊)    &   𝑉 = (Base‘𝑊)    &   𝐿 = (LSubSp‘𝑊)       ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → (𝐴𝑆) = 𝑆)
 
Theoremaspsubrg 20990 The algebraic span of a set of vectors is a subring of the algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐴 = (AlgSpan‘𝑊)    &   𝑉 = (Base‘𝑊)       ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) ∈ (SubRing‘𝑊))
 
Theoremaspss 20991 Span preserves subset ordering. (spanss 29611 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐴 = (AlgSpan‘𝑊)    &   𝑉 = (Base‘𝑊)       ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) ⊆ (𝐴𝑆))
 
Theoremaspssid 20992 A set of vectors is a subset of its span. (spanss2 29608 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐴 = (AlgSpan‘𝑊)    &   𝑉 = (Base‘𝑊)       ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐴𝑆))
 
Theoremasclfval 20993* Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &    1 = (1r𝑊)       𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
 
Theoremasclval 20994 Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &    1 = (1r𝑊)       (𝑋𝐾 → (𝐴𝑋) = (𝑋 · 1 ))
 
Theoremasclfn 20995 Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       𝐴 Fn 𝐾
 
Theoremasclf 20996 The algebra scalars function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   (𝜑𝑊 ∈ Ring)    &   (𝜑𝑊 ∈ LMod)    &   𝐾 = (Base‘𝐹)    &   𝐵 = (Base‘𝑊)       (𝜑𝐴:𝐾𝐵)
 
Theoremasclghm 20997 The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   (𝜑𝑊 ∈ Ring)    &   (𝜑𝑊 ∈ LMod)       (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))
 
Theoremascl0 20998 The scalar 0 embedded into a left module corresponds to the 0 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑊 ∈ Ring)       (𝜑 → (𝐴‘(0g𝐹)) = (0g𝑊))
 
Theoremascl1 20999 The scalar 1 embedded into a left module corresponds to the 1 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑊 ∈ Ring)       (𝜑 → (𝐴‘(1r𝐹)) = (1r𝑊))
 
Theoremasclmul1 21000 Left multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015.)
𝐴 = (algSc‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    × = (.r𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑋𝑉) → ((𝐴𝑅) × 𝑋) = (𝑅 · 𝑋))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >