Detailed syntax breakdown of Definition df-subgr
Step | Hyp | Ref
| Expression |
1 | | csubgr 27634 |
. 2
class
SubGraph |
2 | | vs |
. . . . . . 7
setvar 𝑠 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑠 |
4 | | cvtx 27366 |
. . . . . 6
class
Vtx |
5 | 3, 4 | cfv 6433 |
. . . . 5
class
(Vtx‘𝑠) |
6 | | vg |
. . . . . . 7
setvar 𝑔 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑔 |
8 | 7, 4 | cfv 6433 |
. . . . 5
class
(Vtx‘𝑔) |
9 | 5, 8 | wss 3887 |
. . . 4
wff
(Vtx‘𝑠)
⊆ (Vtx‘𝑔) |
10 | | ciedg 27367 |
. . . . . 6
class
iEdg |
11 | 3, 10 | cfv 6433 |
. . . . 5
class
(iEdg‘𝑠) |
12 | 7, 10 | cfv 6433 |
. . . . . 6
class
(iEdg‘𝑔) |
13 | 11 | cdm 5589 |
. . . . . 6
class dom
(iEdg‘𝑠) |
14 | 12, 13 | cres 5591 |
. . . . 5
class
((iEdg‘𝑔)
↾ dom (iEdg‘𝑠)) |
15 | 11, 14 | wceq 1539 |
. . . 4
wff
(iEdg‘𝑠) =
((iEdg‘𝑔) ↾ dom
(iEdg‘𝑠)) |
16 | | cedg 27417 |
. . . . . 6
class
Edg |
17 | 3, 16 | cfv 6433 |
. . . . 5
class
(Edg‘𝑠) |
18 | 5 | cpw 4533 |
. . . . 5
class 𝒫
(Vtx‘𝑠) |
19 | 17, 18 | wss 3887 |
. . . 4
wff
(Edg‘𝑠)
⊆ 𝒫 (Vtx‘𝑠) |
20 | 9, 15, 19 | w3a 1086 |
. . 3
wff
((Vtx‘𝑠)
⊆ (Vtx‘𝑔) ∧
(iEdg‘𝑠) =
((iEdg‘𝑔) ↾ dom
(iEdg‘𝑠)) ∧
(Edg‘𝑠) ⊆
𝒫 (Vtx‘𝑠)) |
21 | 20, 2, 6 | copab 5136 |
. 2
class
{〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫
(Vtx‘𝑠))} |
22 | 1, 21 | wceq 1539 |
1
wff SubGraph =
{〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫
(Vtx‘𝑠))} |