Detailed syntax breakdown of Definition df-subgr
| Step | Hyp | Ref
| Expression |
| 1 | | csubgr 29284 |
. 2
class
SubGraph |
| 2 | | vs |
. . . . . . 7
setvar 𝑠 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑠 |
| 4 | | cvtx 29013 |
. . . . . 6
class
Vtx |
| 5 | 3, 4 | cfv 6561 |
. . . . 5
class
(Vtx‘𝑠) |
| 6 | | vg |
. . . . . . 7
setvar 𝑔 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑔 |
| 8 | 7, 4 | cfv 6561 |
. . . . 5
class
(Vtx‘𝑔) |
| 9 | 5, 8 | wss 3951 |
. . . 4
wff
(Vtx‘𝑠)
⊆ (Vtx‘𝑔) |
| 10 | | ciedg 29014 |
. . . . . 6
class
iEdg |
| 11 | 3, 10 | cfv 6561 |
. . . . 5
class
(iEdg‘𝑠) |
| 12 | 7, 10 | cfv 6561 |
. . . . . 6
class
(iEdg‘𝑔) |
| 13 | 11 | cdm 5685 |
. . . . . 6
class dom
(iEdg‘𝑠) |
| 14 | 12, 13 | cres 5687 |
. . . . 5
class
((iEdg‘𝑔)
↾ dom (iEdg‘𝑠)) |
| 15 | 11, 14 | wceq 1540 |
. . . 4
wff
(iEdg‘𝑠) =
((iEdg‘𝑔) ↾ dom
(iEdg‘𝑠)) |
| 16 | | cedg 29064 |
. . . . . 6
class
Edg |
| 17 | 3, 16 | cfv 6561 |
. . . . 5
class
(Edg‘𝑠) |
| 18 | 5 | cpw 4600 |
. . . . 5
class 𝒫
(Vtx‘𝑠) |
| 19 | 17, 18 | wss 3951 |
. . . 4
wff
(Edg‘𝑠)
⊆ 𝒫 (Vtx‘𝑠) |
| 20 | 9, 15, 19 | w3a 1087 |
. . 3
wff
((Vtx‘𝑠)
⊆ (Vtx‘𝑔) ∧
(iEdg‘𝑠) =
((iEdg‘𝑔) ↾ dom
(iEdg‘𝑠)) ∧
(Edg‘𝑠) ⊆
𝒫 (Vtx‘𝑠)) |
| 21 | 20, 2, 6 | copab 5205 |
. 2
class
{〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫
(Vtx‘𝑠))} |
| 22 | 1, 21 | wceq 1540 |
1
wff SubGraph =
{〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫
(Vtx‘𝑠))} |