| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsubgr | Structured version Visualization version GIF version | ||
| Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.) |
| Ref | Expression |
|---|---|
| relsubgr | ⊢ Rel SubGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subgr 29246 | . 2 ⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel SubGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ⊆ wss 3897 𝒫 cpw 4547 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 ‘cfv 6481 Vtxcvtx 28974 iEdgciedg 28975 Edgcedg 29025 SubGraph csubgr 29245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-subgr 29246 |
| This theorem is referenced by: subgrv 29248 |
| Copyright terms: Public domain | W3C validator |