| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsubgr | Structured version Visualization version GIF version | ||
| Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.) |
| Ref | Expression |
|---|---|
| relsubgr | ⊢ Rel SubGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subgr 29201 | . 2 ⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} | |
| 2 | 1 | relopabiv 5785 | 1 ⊢ Rel SubGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ⊆ wss 3916 𝒫 cpw 4565 dom cdm 5640 ↾ cres 5642 Rel wrel 5645 ‘cfv 6513 Vtxcvtx 28929 iEdgciedg 28930 Edgcedg 28980 SubGraph csubgr 29200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3933 df-opab 5172 df-xp 5646 df-rel 5647 df-subgr 29201 |
| This theorem is referenced by: subgrv 29203 |
| Copyright terms: Public domain | W3C validator |