![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsubgr | Structured version Visualization version GIF version |
Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.) |
Ref | Expression |
---|---|
relsubgr | ⊢ Rel SubGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-subgr 29303 | . 2 ⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel SubGraph |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1537 ⊆ wss 3976 𝒫 cpw 4622 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 SubGraph csubgr 29302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-subgr 29303 |
This theorem is referenced by: subgrv 29305 |
Copyright terms: Public domain | W3C validator |