Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsubgr | Structured version Visualization version GIF version |
Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.) |
Ref | Expression |
---|---|
relsubgr | ⊢ Rel SubGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-subgr 27616 | . 2 ⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} | |
2 | 1 | relopabiv 5727 | 1 ⊢ Rel SubGraph |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1541 ⊆ wss 3891 𝒫 cpw 4538 dom cdm 5588 ↾ cres 5590 Rel wrel 5593 ‘cfv 6430 Vtxcvtx 27347 iEdgciedg 27348 Edgcedg 27398 SubGraph csubgr 27615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-opab 5141 df-xp 5594 df-rel 5595 df-subgr 27616 |
This theorem is referenced by: subgrv 27618 |
Copyright terms: Public domain | W3C validator |