MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsubgr Structured version   Visualization version   GIF version

Theorem relsubgr 29205
Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
relsubgr Rel SubGraph

Proof of Theorem relsubgr
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subgr 29204 . 2 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
21relopabiv 5826 1 Rel SubGraph
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1534  wss 3947  𝒫 cpw 4607  dom cdm 5682  cres 5684  Rel wrel 5687  cfv 6554  Vtxcvtx 28932  iEdgciedg 28933  Edgcedg 28983   SubGraph csubgr 29203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-ss 3964  df-opab 5216  df-xp 5688  df-rel 5689  df-subgr 29204
This theorem is referenced by:  subgrv  29206
  Copyright terms: Public domain W3C validator