![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsubgr | Structured version Visualization version GIF version |
Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.) |
Ref | Expression |
---|---|
relsubgr | ⊢ Rel SubGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-subgr 29204 | . 2 ⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} | |
2 | 1 | relopabiv 5826 | 1 ⊢ Rel SubGraph |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 = wceq 1534 ⊆ wss 3947 𝒫 cpw 4607 dom cdm 5682 ↾ cres 5684 Rel wrel 5687 ‘cfv 6554 Vtxcvtx 28932 iEdgciedg 28933 Edgcedg 28983 SubGraph csubgr 29203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-ss 3964 df-opab 5216 df-xp 5688 df-rel 5689 df-subgr 29204 |
This theorem is referenced by: subgrv 29206 |
Copyright terms: Public domain | W3C validator |