MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsubgr Structured version   Visualization version   GIF version

Theorem relsubgr 29034
Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
relsubgr Rel SubGraph

Proof of Theorem relsubgr
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subgr 29033 . 2 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
21relopabiv 5813 1 Rel SubGraph
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1533  wss 3943  𝒫 cpw 4597  dom cdm 5669  cres 5671  Rel wrel 5674  cfv 6537  Vtxcvtx 28764  iEdgciedg 28765  Edgcedg 28815   SubGraph csubgr 29032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-in 3950  df-ss 3960  df-opab 5204  df-xp 5675  df-rel 5676  df-subgr 29033
This theorem is referenced by:  subgrv  29035
  Copyright terms: Public domain W3C validator