![]() |
Metamath
Proof Explorer Theorem List (p. 292 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30640) |
![]() (30641-32163) |
![]() (32164-48040) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nbfiusgrfi 29101 | The class of neighbors of a vertex in a finite simple graph is a finite set. (Contributed by Alexander van der Vekens, 7-Mar-2018.) (Revised by AV, 28-Oct-2020.) |
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) ∈ Fin) | ||
Theorem | hashnbusgrnn0 29102 | The number of neighbors of a vertex in a finite simple graph is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 15-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ∈ ℕ0) | ||
Theorem | nbfusgrlevtxm1 29103 | The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 1)) | ||
Theorem | nbfusgrlevtxm2 29104 | If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑈))) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 2)) | ||
Theorem | nbusgrvtxm1 29105 | If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → ((𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈) → 𝑀 ∈ (𝐺 NeighbVtx 𝑈)))) | ||
Theorem | nb3grprlem1 29106 | Lemma 1 for nb3grpr 29108. (Contributed by Alexander van der Vekens, 15-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) ⇒ ⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) | ||
Theorem | nb3grprlem2 29107* | Lemma 2 for nb3grpr 29108. (Contributed by Alexander van der Vekens, 17-Oct-2017.) (Revised by AV, 28-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) | ||
Theorem | nb3grpr 29108* | The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) | ||
Theorem | nb3grpr2 29109 | The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ USGraph) & ⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) & ⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ⇒ ⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) | ||
Theorem | nb3gr2nb 29110 | If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.) |
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) | ||
Syntax | cuvtx 29111 | Extend class notation with the universal vertices (in a graph). |
class UnivVtx | ||
Definition | df-uvtx 29112* | Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) | ||
Theorem | uvtxval 29113* | The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} | ||
Theorem | uvtxel 29114* | A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) | ||
Theorem | uvtxisvtx 29115 | A universal vertex is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ 𝑉) | ||
Theorem | uvtxssvtx 29116 | The set of the universal vertices is a subset of the set of all vertices. (Contributed by AV, 23-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) ⊆ 𝑉 | ||
Theorem | vtxnbuvtx 29117* | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) | ||
Theorem | uvtxnbgrss 29118 | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝑉 ∖ {𝑁}) ⊆ (𝐺 NeighbVtx 𝑁)) | ||
Theorem | uvtxnbgrvtx 29119* | A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣)) | ||
Theorem | uvtx0 29120 | There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅) | ||
Theorem | isuvtx 29121* | The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} | ||
Theorem | uvtxel1 29122* | Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) | ||
Theorem | uvtx01vtx 29123 | If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1)) | ||
Theorem | uvtx2vtx1edg 29124* | If a graph has two vertices, and there is an edge between the vertices, then each vertex is universal. (Contributed by AV, 1-Nov-2020.) (Revised by AV, 25-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((♯‘𝑉) = 2 ∧ 𝑉 ∈ 𝐸) → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | ||
Theorem | uvtx2vtx1edgb 29125* | If a hypergraph has two vertices, there is an edge between the vertices iff each vertex is universal. (Contributed by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
Theorem | uvtxnbgr 29126 | A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) | ||
Theorem | uvtxnbgrb 29127 | A vertex is universal iff all the other vertices are its neighbors. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) | ||
Theorem | uvtxusgr 29128* | The set of all universal vertices of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (UnivVtx‘𝐺) = {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛}){𝑘, 𝑛} ∈ 𝐸}) | ||
Theorem | uvtxusgrel 29129* | A universal vertex, i.e. an element of the set of all universal vertices, of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))) | ||
Theorem | uvtxnm1nbgr 29130 | A universal vertex has 𝑛 − 1 neighbors in a finite graph with 𝑛 vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (UnivVtx‘𝐺)) → (♯‘(𝐺 NeighbVtx 𝑁)) = ((♯‘𝑉) − 1)) | ||
Theorem | nbusgrvtxm1uvtx 29131 | If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, the vertex is universal. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1) → 𝑈 ∈ (UnivVtx‘𝐺))) | ||
Theorem | uvtxnbvtxm1 29132 | A universal vertex has 𝑛 − 1 neighbors in a finite simple graph with 𝑛 vertices. A biconditional version of nbusgrvtxm1uvtx 29131 resp. uvtxnm1nbgr 29130. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 16-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (𝑈 ∈ (UnivVtx‘𝐺) ↔ (♯‘(𝐺 NeighbVtx 𝑈)) = ((♯‘𝑉) − 1))) | ||
Theorem | nbupgruvtxres 29133* | The neighborhood of a universal vertex in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))) | ||
Theorem | uvtxupgrres 29134* | A universal vertex is universal in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆))) | ||
Syntax | ccplgr 29135 | Extend class notation with (arbitrary) complete graphs. |
class ComplGraph | ||
Syntax | ccusgr 29136 | Extend class notation with complete simple graphs. |
class ComplUSGraph | ||
Definition | df-cplgr 29137 | Define the class of all complete "graphs". A class/graph is called complete if every pair of distinct vertices is connected by an edge, i.e., each vertex has all other vertices as neighbors or, in other words, each vertex is a universal vertex. (Contributed by AV, 24-Oct-2020.) (Revised by TA, 15-Feb-2022.) |
⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} | ||
Definition | df-cusgr 29138 | Define the class of all complete simple graphs. A simple graph is called complete if every pair of distinct vertices is connected by a (unique) edge, see definition in section 1.1 of [Diestel] p. 3. In contrast, the definition in section I.1 of [Bollobas] p. 3 is based on the size of (finite) complete graphs, see cusgrsize 29180. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) (Revised by BJ, 14-Feb-2022.) |
⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | ||
Theorem | cplgruvtxb 29139 | A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) | ||
Theorem | prcliscplgr 29140* | A proper class (representing a null graph, see vtxvalprc 28774) has the property of a complete graph (see also cplgr0v 29153), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺 ∈ 𝑊 is necessary in the following theorems like iscplgr 29141. (Contributed by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | ||
Theorem | iscplgr 29141* | The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
Theorem | iscplgrnb 29142* | A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) | ||
Theorem | iscplgredg 29143* | A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | ||
Theorem | iscusgr 29144 | The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | ||
Theorem | cusgrusgr 29145 | A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | ||
Theorem | cusgrcplgr 29146 | A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | ||
Theorem | iscusgrvtx 29147* | A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) | ||
Theorem | cusgruvtxb 29148 | A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) | ||
Theorem | iscusgredg 29149* | A simple graph is complete iff all vertices are connected by an edge. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) | ||
Theorem | cusgredg 29150* | In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
Theorem | cplgr0 29151 | The null graph (with no vertices and no edges) represented by the empty set is a complete graph. (Contributed by AV, 1-Nov-2020.) |
⊢ ∅ ∈ ComplGraph | ||
Theorem | cusgr0 29152 | The null graph (with no vertices and no edges) represented by the empty set is a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
⊢ ∅ ∈ ComplUSGraph | ||
Theorem | cplgr0v 29153 | A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) | ||
Theorem | cusgr0v 29154 | A graph with no vertices and no edges is a complete simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) | ||
Theorem | cplgr1vlem 29155 | Lemma for cplgr1v 29156 and cusgr1v 29157. (Contributed by AV, 23-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) | ||
Theorem | cplgr1v 29156 | A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) | ||
Theorem | cusgr1v 29157 | A graph with one vertex and no edges is a complete simple graph. (Contributed by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((♯‘𝑉) = 1 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ ComplUSGraph) | ||
Theorem | cplgr2v 29158 | An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ ComplGraph ↔ 𝑉 ∈ 𝐸)) | ||
Theorem | cplgr2vpr 29159 | An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.) (Revised by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ {𝐴, 𝐵} ∈ 𝐸)) | ||
Theorem | nbcplgr 29160 | In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) | ||
Theorem | cplgr3v 29161 | A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) | ||
Theorem | cusgr3vnbpr 29162* | The neighbors of a vertex in a simple graph with three elements are unordered pairs of the other vertices if and only if the graph is complete. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 5-Nov-2020.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) | ||
Theorem | cplgrop 29163 | A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.) |
⊢ (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph) | ||
Theorem | cusgrop 29164 | A complete simple graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.) |
⊢ (𝐺 ∈ ComplUSGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplUSGraph) | ||
Theorem | cusgrexilem1 29165* | Lemma 1 for cusgrexi 29169. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) | ||
Theorem | usgrexilem 29166* | Lemma for usgrexi 29167. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
Theorem | usgrexi 29167* | An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph) | ||
Theorem | cusgrexilem2 29168* | Lemma 2 for cusgrexi 29169. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) | ||
Theorem | cusgrexi 29169* | An arbitrary set 𝑉 regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplUSGraph) | ||
Theorem | cusgrexg 29170* | For each set there is a set of edges so that the set together with these edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) |
⊢ (𝑉 ∈ 𝑊 → ∃𝑒⟨𝑉, 𝑒⟩ ∈ ComplUSGraph) | ||
Theorem | structtousgr 29171* | Any (extensible) structure with a base set can be made a simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ USGraph) | ||
Theorem | structtocusgr 29172* | Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) (Proof shortened by AV, 14-Feb-2022.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝐺 ∈ ComplUSGraph) | ||
Theorem | cffldtocusgr 29173* | The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) |
⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} & ⊢ 𝐺 = (ℂfld sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩) ⇒ ⊢ 𝐺 ∈ ComplUSGraph | ||
Theorem | cusgrres 29174* | Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} & ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) | ||
Theorem | cusgrsizeindb0 29175 | Base case of the induction in cusgrsize 29180. The size of a complete simple graph with 0 vertices, actually of every null graph, is 0=((0-1)*0)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 0) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
Theorem | cusgrsizeindb1 29176 | Base case of the induction in cusgrsize 29180. The size of a (complete) simple graph with 1 vertex is 0=((1-1)*1)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
Theorem | cusgrsizeindslem 29177* | Lemma for cusgrsizeinds 29178. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) | ||
Theorem | cusgrsizeinds 29178* | Part 1 of induction step in cusgrsize 29180. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | ||
Theorem | cusgrsize2inds 29179* | Induction step in cusgrsize 29180. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⇒ ⊢ (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))) | ||
Theorem | cusgrsize 29180 | The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ ℕ0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 − 1)∗𝑛) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2)) | ||
Theorem | cusgrfilem1 29181* | Lemma 1 for cusgrfi 29184. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) | ||
Theorem | cusgrfilem2 29182* | Lemma 2 for cusgrfi 29184. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | ||
Theorem | cusgrfilem3 29183* | Lemma 3 for cusgrfi 29184. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} & ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) | ||
Theorem | cusgrfi 29184 | If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) | ||
Theorem | usgredgsscusgredg 29185 | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸 ⊆ 𝐹) | ||
Theorem | usgrsscusgr 29186* | A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ∀𝑒 ∈ 𝐸 ∃𝑓 ∈ 𝐹 𝑒 = 𝑓) | ||
Theorem | sizusglecusglem1 29187 | Lemma 1 for sizusglecusg 29189. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → ( I ↾ 𝐸):𝐸–1-1→𝐹) | ||
Theorem | sizusglecusglem2 29188 | Lemma 2 for sizusglecusg 29189. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) | ||
Theorem | sizusglecusg 29189 | The size of a simple graph with 𝑛 vertices is at most the size of a complete simple graph with 𝑛 vertices (𝑛 may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 13-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ 𝐹 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (♯‘𝐸) ≤ (♯‘𝐹)) | ||
Theorem | fusgrmaxsize 29190 | The maximum size of a finite simple graph with 𝑛 vertices is (((𝑛 − 1)∗𝑛) / 2). See statement in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 14-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝐸) ≤ ((♯‘𝑉)C2)) | ||
Syntax | cvtxdg 29191 | Extend class notation with the vertex degree function. |
class VtxDeg | ||
Definition | df-vtxdg 29192* | Define the vertex degree function for a graph. To be appropriate for arbitrary hypergraphs, we have to double-count those edges that contain 𝑢 "twice" (i.e. self-loops), this being represented as a singleton as the edge's value. Since the degree of a vertex can be (positive) infinity (if the graph containing the vertex is not of finite size), the extended addition +𝑒 is used for the summation of the number of "ordinary" edges" and the number of "loops". (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 9-Dec-2020.) |
⊢ VtxDeg = (𝑔 ∈ V ↦ ⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})))) | ||
Theorem | vtxdgfval 29193* | The value of the vertex degree function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 9-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) | ||
Theorem | vtxdgval 29194* | The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | ||
Theorem | vtxdgfival 29195* | The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 8-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | ||
Theorem | vtxdgop 29196 | The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) |
⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) | ||
Theorem | vtxdgf 29197 | The vertex degree function is a function from vertices to extended nonnegative integers. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺):𝑉⟶ℕ0*) | ||
Theorem | vtxdgelxnn0 29198 | The degree of a vertex is either a nonnegative integer or positive infinity. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑋) ∈ ℕ0*) | ||
Theorem | vtxdg0v 29199 | The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) | ||
Theorem | vtxdg0e 29200 | The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 29262, vdegp1bi 29263 and vdegp1ci 29264). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |