![]() |
Metamath
Proof Explorer Theorem List (p. 292 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isuhgrop 29101 | The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | ||
Theorem | uhgr0e 29102 | The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UHGraph) | ||
Theorem | uhgr0vb 29103 | The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | ||
Theorem | uhgr0 29104 | The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.) |
⊢ ∅ ∈ UHGraph | ||
Theorem | uhgrun 29105 | The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
Theorem | uhgrunop 29106 | The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
Theorem | ushgrun 29107 | The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
Theorem | ushgrunop 29108 | The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
Theorem | uhgrstrrepe 29109 | Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) ⇒ ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph) | ||
Theorem | incistruhgr 29110* | An incidence structure 〈𝑃, 𝐿, 𝐼〉 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations (analogous to LineG and Itv) and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) | ||
Syntax | cupgr 29111 | Extend class notation with undirected pseudographs. |
class UPGraph | ||
Syntax | cumgr 29112 | Extend class notation with undirected multigraphs. |
class UMGraph | ||
Definition | df-upgr 29113* | Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgr 29114). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) |
⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} | ||
Definition | df-umgr 29114* | Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14508 and isumgrs 29127). (Contributed by AV, 24-Nov-2020.) |
⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} | ||
Theorem | isupgr 29115* | The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | ||
Theorem | wrdupgr 29116* | The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | ||
Theorem | upgrf 29117* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn 29118 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
Theorem | upgrfn 29118* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
Theorem | upgrss 29119 | An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||
Theorem | upgrn0 29120 | An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | ||
Theorem | upgrle 29121 | An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) | ||
Theorem | upgrfi 29122 | An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ Fin) | ||
Theorem | upgrex 29123* | An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | ||
Theorem | upgrbi 29124* | Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 28-Feb-2021.) |
⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | ||
Theorem | upgrop 29125 | A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.) |
⊢ (𝐺 ∈ UPGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph) | ||
Theorem | isumgr 29126* | The property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) | ||
Theorem | isumgrs 29127* | The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
Theorem | wrdumgr 29128* | The property of being an undirected multigraph, expressing the edges as "words". (Contributed by AV, 24-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
Theorem | umgrf 29129* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfn 29130 without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
Theorem | umgrfn 29130* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
Theorem | umgredg2 29131 | An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) | ||
Theorem | umgrbi 29132* | Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.) |
⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑌 ⇒ ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | ||
Theorem | upgruhgr 29133 | An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | ||
Theorem | umgrupgr 29134 | An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | ||
Theorem | umgruhgr 29135 | An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.) |
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | ||
Theorem | upgrle2 29136 | An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) | ||
Theorem | umgrnloopv 29137 | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
Theorem | umgredgprv 29138 | In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) | ||
Theorem | umgrnloop 29139* | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
Theorem | umgrnloop0 29140* | A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) | ||
Theorem | umgr0e 29141 | The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UMGraph) | ||
Theorem | upgr0e 29142 | The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UPGraph) | ||
Theorem | upgr1elem 29143* | Lemma for upgr1e 29144 and uspgr1e 29275. (Contributed by AV, 16-Oct-2020.) |
⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝑆 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
Theorem | upgr1e 29144 | A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 29275. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) ⇒ ⊢ (𝜑 → 𝐺 ∈ UPGraph) | ||
Theorem | upgr0eop 29145 | The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, see usgr0eop 29277, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) |
⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) | ||
Theorem | upgr1eop 29146 | A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1eop 29278. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) | ||
Theorem | upgr0eopALT 29147 | Alternate proof of upgr0eop 29145, using the general theorem gropeld 29064 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 29145). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) | ||
Theorem | upgr1eopALT 29148 | Alternate proof of upgr1eop 29146, using the general theorem gropeld 29064 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 29146). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) | ||
Theorem | upgrun 29149 | The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐻 ∈ UPGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UPGraph) | ||
Theorem | upgrunop 29150 | The union of two pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐻 ∈ UPGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) | ||
Theorem | umgrun 29151 | The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐻 ∈ UMGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UMGraph) | ||
Theorem | umgrunop 29152 | The union of two multigraphs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are multigraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐻 ∈ UMGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UMGraph) | ||
For a hypergraph, the property to be "loop-free" is expressed by 𝐼:dom 𝐼⟶𝐸 with 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} and 𝐼 = (iEdg‘𝐺). 𝐸 is the set of edges which connect at least two vertices. | ||
Theorem | umgrislfupgrlem 29153 | Lemma for umgrislfupgr 29154 and usgrislfuspgr 29218. (Contributed by AV, 27-Jan-2021.) |
⊢ ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} | ||
Theorem | umgrislfupgr 29154* | A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) | ||
Theorem | lfgredgge2 29155* | An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ⇒ ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑋))) | ||
Theorem | lfgrnloop 29156* | A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ⇒ ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) | ||
Theorem | uhgredgiedgb 29157* | In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | ||
Theorem | uhgriedg0edg0 29158 | A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.) |
⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | ||
Theorem | uhgredgn0 29159 | An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.) |
⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | ||
Theorem | edguhgr 29160 | An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.) |
⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺)) | ||
Theorem | uhgredgrnv 29161 | An edge of a hypergraph contains only vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 4-Jun-2021.) |
⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝐸) → 𝑁 ∈ (Vtx‘𝐺)) | ||
Theorem | uhgredgss 29162 | The set of edges of a hypergraph is a subset of the power set of vertices without the empty set. (Contributed by AV, 29-Nov-2020.) |
⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) | ||
Theorem | upgredgss 29163* | The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.) |
⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
Theorem | umgredgss 29164* | The set of edges of a multigraph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 25-Nov-2020.) |
⊢ (𝐺 ∈ UMGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) | ||
Theorem | edgupgr 29165 | Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)) | ||
Theorem | edgumgr 29166 | Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020.) |
⊢ ((𝐺 ∈ UMGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐸) = 2)) | ||
Theorem | uhgrvtxedgiedgb 29167* | In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.) |
⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖) ↔ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) | ||
Theorem | upgredg 29168* | For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) | ||
Theorem | umgredg 29169* | For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) | ||
Theorem | upgrpredgv 29170 | An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) | ||
Theorem | umgrpredgv 29171 | An edge of a multigraph always connects two vertices. Analogue of umgredgprv 29138. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 4769 or prprc2 4770, i.e. a loop), but 𝑀 ∈ 𝑉 or 𝑁 ∈ 𝑉 would not be true. (Contributed by AV, 27-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) | ||
Theorem | upgredg2vtx 29172* | For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) | ||
Theorem | upgredgpr 29173 | If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} = 𝐶) | ||
Theorem | edglnl 29174* | The edges incident with a vertex 𝑁 are the edges joining 𝑁 with other vertices and the loops on 𝑁 in a pseudograph. (Contributed by AV, 18-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) | ||
Theorem | numedglnl 29175* | The number of edges incident with a vertex 𝑁 is the number of edges joining 𝑁 with other vertices and the number of loops on 𝑁 in a pseudograph of finite size. (Contributed by AV, 19-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) | ||
Theorem | umgredgne 29176 | An edge of a multigraph always connects two different vertices. Analogue of umgrnloopv 29137 resp. umgrnloop 29139. (Contributed by AV, 27-Nov-2020.) |
⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → 𝑀 ≠ 𝑁) | ||
Theorem | umgrnloop2 29177 | A multigraph has no loops. (Contributed by AV, 27-Oct-2020.) (Revised by AV, 30-Nov-2020.) |
⊢ (𝐺 ∈ UMGraph → {𝑁, 𝑁} ∉ (Edg‘𝐺)) | ||
Theorem | umgredgnlp 29178* | An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.) |
⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ¬ ∃𝑣 𝐶 = {𝑣}) | ||
In this section, "simple graph" will always stand for "undirected simple graph (without loops)" and "simple pseudograph" for "undirected simple pseudograph (which could have loops)". | ||
Syntax | cuspgr 29179 | Extend class notation with undirected simple pseudographs (which could have loops). |
class USPGraph | ||
Syntax | cusgr 29180 | Extend class notation with undirected simple graphs (without loops). |
class USGraph | ||
Definition | df-uspgr 29181* | Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph (see uspgrupgr 29209) or a special undirected simple hypergraph (see uspgrushgr 29208), consisting of a set 𝑣 (of "vertices") and an injective (one-to-one) function 𝑒 (representing (indexed) "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ USPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} | ||
Definition | df-usgr 29182* | Define the class of all undirected simple graphs (without loops). An undirected simple graph is a special undirected simple pseudograph (see usgruspgr 29211), consisting of a set 𝑣 (of "vertices") and an injective (one-to-one) function 𝑒 (representing (indexed) "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to an undirected simple pseudograph, an undirected simple graph has no loops (edges connecting a vertex with itself). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ USGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} | ||
Theorem | isuspgr 29183* | The property of being a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) | ||
Theorem | isusgr 29184* | The property of being a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) | ||
Theorem | uspgrf 29185* | The edge function of a simple pseudograph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
Theorem | usgrf 29186* | The edge function of a simple graph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) | ||
Theorem | isusgrs 29187* | The property of being a simple graph, simplified version of isusgr 29184. (Contributed by Alexander van der Vekens, 13-Aug-2017.) (Revised by AV, 13-Oct-2020.) (Proof shortened by AV, 24-Nov-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
Theorem | usgrfs 29188* | The edge function of a simple graph is a one-to-one function into unordered pairs of vertices. Simplified version of usgrf 29186. (Contributed by Alexander van der Vekens, 13-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
Theorem | usgrfun 29189 | The edge function of a simple graph is a function. (Contributed by Alexander van der Vekens, 18-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
⊢ (𝐺 ∈ USGraph → Fun (iEdg‘𝐺)) | ||
Theorem | usgredgss 29190* | The set of edges of a simple graph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 14-Oct-2020.) |
⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) | ||
Theorem | edgusgr 29191 | An edge of a simple graph is an unordered pair of vertices. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 14-Oct-2020.) |
⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐸) = 2)) | ||
Theorem | isuspgrop 29192* | The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) | ||
Theorem | isusgrop 29193* | The property of being an undirected simple graph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 30-Nov-2020.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2})) | ||
Theorem | usgrop 29194 | A simple graph represented by an ordered pair. (Contributed by AV, 23-Oct-2020.) (Proof shortened by AV, 30-Nov-2020.) |
⊢ (𝐺 ∈ USGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ USGraph) | ||
Theorem | isausgr 29195* | The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | ||
Theorem | ausgrusgrb 29196* | The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉𝐺𝐸 ↔ 〈𝑉, ( I ↾ 𝐸)〉 ∈ USGraph)) | ||
Theorem | usgrausgri 29197* | A simple graph represented by an alternatively defined simple graph. (Contributed by AV, 15-Oct-2020.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} ⇒ ⊢ (𝐻 ∈ USGraph → (Vtx‘𝐻)𝐺(Edg‘𝐻)) | ||
Theorem | ausgrumgri 29198* | If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} ⇒ ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) | ||
Theorem | ausgrusgri 29199* | The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} & ⊢ 𝑂 = {𝑓 ∣ 𝑓:dom 𝑓–1-1→ran 𝑓} ⇒ ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph) | ||
Theorem | usgrausgrb 29200* | The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}} & ⊢ 𝑂 = {𝑓 ∣ 𝑓:dom 𝑓–1-1→ran 𝑓} ⇒ ⊢ ((𝐻 ∈ 𝑊 ∧ (iEdg‘𝐻) ∈ 𝑂) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ 𝐻 ∈ USGraph)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |