MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr Structured version   Visualization version   GIF version

Theorem issubgr 29234
Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
issubgr ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))

Proof of Theorem issubgr
Dummy variables 𝑠 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . . 7 (𝑠 = 𝑆 → (Vtx‘𝑠) = (Vtx‘𝑆))
21adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑠) = (Vtx‘𝑆))
3 fveq2 6826 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
43adantl 481 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑔) = (Vtx‘𝐺))
52, 4sseq12d 3971 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)))
6 fveq2 6826 . . . . . . 7 (𝑠 = 𝑆 → (iEdg‘𝑠) = (iEdg‘𝑆))
76adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑠) = (iEdg‘𝑆))
8 fveq2 6826 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
98adantl 481 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑔) = (iEdg‘𝐺))
106dmeqd 5852 . . . . . . . 8 (𝑠 = 𝑆 → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
1110adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
129, 11reseq12d 5935 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
137, 12eqeq12d 2745 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
14 fveq2 6826 . . . . . . 7 (𝑠 = 𝑆 → (Edg‘𝑠) = (Edg‘𝑆))
151pweqd 4570 . . . . . . 7 (𝑠 = 𝑆 → 𝒫 (Vtx‘𝑠) = 𝒫 (Vtx‘𝑆))
1614, 15sseq12d 3971 . . . . . 6 (𝑠 = 𝑆 → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716adantr 480 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
185, 13, 173anbi123d 1438 . . . 4 ((𝑠 = 𝑆𝑔 = 𝐺) → (((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠)) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
19 df-subgr 29231 . . . 4 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
2018, 19brabga 5481 . . 3 ((𝑆𝑈𝐺𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
2120ancoms 458 . 2 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
22 issubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
23 issubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
2422, 23sseq12i 3968 . . 3 (𝑉𝐴 ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
25 issubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
26 issubgr.b . . . . 5 𝐵 = (iEdg‘𝐺)
2725dmeqi 5851 . . . . 5 dom 𝐼 = dom (iEdg‘𝑆)
2826, 27reseq12i 5932 . . . 4 (𝐵 ↾ dom 𝐼) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))
2925, 28eqeq12i 2747 . . 3 (𝐼 = (𝐵 ↾ dom 𝐼) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
30 issubgr.e . . . 4 𝐸 = (Edg‘𝑆)
3122pweqi 4569 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝑆)
3230, 31sseq12i 3968 . . 3 (𝐸 ⊆ 𝒫 𝑉 ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
3324, 29, 323anbi123i 1155 . 2 ((𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
3421, 33bitr4di 289 1 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  𝒫 cpw 4553   class class class wbr 5095  dom cdm 5623  cres 5625  cfv 6486  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010   SubGraph csubgr 29230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-dm 5633  df-res 5635  df-iota 6442  df-fv 6494  df-subgr 29231
This theorem is referenced by:  issubgr2  29235  subgrprop  29236  uhgrissubgr  29238  egrsubgr  29240  0grsubgr  29241  uhgrspan1  29266
  Copyright terms: Public domain W3C validator