MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr Structured version   Visualization version   GIF version

Theorem issubgr 27061
Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
issubgr ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))

Proof of Theorem issubgr
Dummy variables 𝑠 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . . 7 (𝑠 = 𝑆 → (Vtx‘𝑠) = (Vtx‘𝑆))
21adantr 484 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑠) = (Vtx‘𝑆))
3 fveq2 6645 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
43adantl 485 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑔) = (Vtx‘𝐺))
52, 4sseq12d 3948 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)))
6 fveq2 6645 . . . . . . 7 (𝑠 = 𝑆 → (iEdg‘𝑠) = (iEdg‘𝑆))
76adantr 484 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑠) = (iEdg‘𝑆))
8 fveq2 6645 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
98adantl 485 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑔) = (iEdg‘𝐺))
106dmeqd 5738 . . . . . . . 8 (𝑠 = 𝑆 → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
1110adantr 484 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
129, 11reseq12d 5819 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
137, 12eqeq12d 2814 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
14 fveq2 6645 . . . . . . 7 (𝑠 = 𝑆 → (Edg‘𝑠) = (Edg‘𝑆))
151pweqd 4516 . . . . . . 7 (𝑠 = 𝑆 → 𝒫 (Vtx‘𝑠) = 𝒫 (Vtx‘𝑆))
1614, 15sseq12d 3948 . . . . . 6 (𝑠 = 𝑆 → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716adantr 484 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
185, 13, 173anbi123d 1433 . . . 4 ((𝑠 = 𝑆𝑔 = 𝐺) → (((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠)) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
19 df-subgr 27058 . . . 4 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
2018, 19brabga 5386 . . 3 ((𝑆𝑈𝐺𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
2120ancoms 462 . 2 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
22 issubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
23 issubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
2422, 23sseq12i 3945 . . 3 (𝑉𝐴 ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
25 issubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
26 issubgr.b . . . . 5 𝐵 = (iEdg‘𝐺)
2725dmeqi 5737 . . . . 5 dom 𝐼 = dom (iEdg‘𝑆)
2826, 27reseq12i 5816 . . . 4 (𝐵 ↾ dom 𝐼) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))
2925, 28eqeq12i 2813 . . 3 (𝐼 = (𝐵 ↾ dom 𝐼) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
30 issubgr.e . . . 4 𝐸 = (Edg‘𝑆)
3122pweqi 4515 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝑆)
3230, 31sseq12i 3945 . . 3 (𝐸 ⊆ 𝒫 𝑉 ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
3324, 29, 323anbi123i 1152 . 2 ((𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
3421, 33syl6bbr 292 1 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  𝒫 cpw 4497   class class class wbr 5030  dom cdm 5519  cres 5521  cfv 6324  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840   SubGraph csubgr 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-dm 5529  df-res 5531  df-iota 6283  df-fv 6332  df-subgr 27058
This theorem is referenced by:  issubgr2  27062  subgrprop  27063  uhgrissubgr  27065  egrsubgr  27067  0grsubgr  27068  uhgrspan1  27093
  Copyright terms: Public domain W3C validator