Step | Hyp | Ref
| Expression |
1 | | fveq2 6668 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (Vtx‘𝑠) = (Vtx‘𝑆)) |
2 | 1 | adantr 484 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (Vtx‘𝑠) = (Vtx‘𝑆)) |
3 | | fveq2 6668 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
4 | 3 | adantl 485 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (Vtx‘𝑔) = (Vtx‘𝐺)) |
5 | 2, 4 | sseq12d 3908 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺))) |
6 | | fveq2 6668 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (iEdg‘𝑠) = (iEdg‘𝑆)) |
7 | 6 | adantr 484 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (iEdg‘𝑠) = (iEdg‘𝑆)) |
8 | | fveq2 6668 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
9 | 8 | adantl 485 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (iEdg‘𝑔) = (iEdg‘𝐺)) |
10 | 6 | dmeqd 5742 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → dom (iEdg‘𝑠) = dom (iEdg‘𝑆)) |
11 | 10 | adantr 484 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → dom (iEdg‘𝑠) = dom (iEdg‘𝑆)) |
12 | 9, 11 | reseq12d 5820 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
13 | 7, 12 | eqeq12d 2754 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))) |
14 | | fveq2 6668 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (Edg‘𝑠) = (Edg‘𝑆)) |
15 | 1 | pweqd 4504 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → 𝒫 (Vtx‘𝑠) = 𝒫 (Vtx‘𝑆)) |
16 | 14, 15 | sseq12d 3908 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆))) |
17 | 16 | adantr 484 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆))) |
18 | 5, 13, 17 | 3anbi123d 1437 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠)) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆)))) |
19 | | df-subgr 27202 |
. . . 4
⊢ SubGraph
= {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫
(Vtx‘𝑠))} |
20 | 18, 19 | brabga 5386 |
. . 3
⊢ ((𝑆 ∈ 𝑈 ∧ 𝐺 ∈ 𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
21 | 20 | ancoms 462 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
22 | | issubgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝑆) |
23 | | issubgr.a |
. . . 4
⊢ 𝐴 = (Vtx‘𝐺) |
24 | 22, 23 | sseq12i 3905 |
. . 3
⊢ (𝑉 ⊆ 𝐴 ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
25 | | issubgr.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝑆) |
26 | | issubgr.b |
. . . . 5
⊢ 𝐵 = (iEdg‘𝐺) |
27 | 25 | dmeqi 5741 |
. . . . 5
⊢ dom 𝐼 = dom (iEdg‘𝑆) |
28 | 26, 27 | reseq12i 5817 |
. . . 4
⊢ (𝐵 ↾ dom 𝐼) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) |
29 | 25, 28 | eqeq12i 2753 |
. . 3
⊢ (𝐼 = (𝐵 ↾ dom 𝐼) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
30 | | issubgr.e |
. . . 4
⊢ 𝐸 = (Edg‘𝑆) |
31 | 22 | pweqi 4503 |
. . . 4
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝑆) |
32 | 30, 31 | sseq12i 3905 |
. . 3
⊢ (𝐸 ⊆ 𝒫 𝑉 ↔ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆)) |
33 | 24, 29, 32 | 3anbi123i 1156 |
. 2
⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
34 | 21, 33 | bitr4di 292 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |