| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (Vtx‘𝑠) = (Vtx‘𝑆)) |
| 2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (Vtx‘𝑠) = (Vtx‘𝑆)) |
| 3 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
| 4 | 3 | adantl 481 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (Vtx‘𝑔) = (Vtx‘𝐺)) |
| 5 | 2, 4 | sseq12d 4017 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺))) |
| 6 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (iEdg‘𝑠) = (iEdg‘𝑆)) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (iEdg‘𝑠) = (iEdg‘𝑆)) |
| 8 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
| 9 | 8 | adantl 481 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (iEdg‘𝑔) = (iEdg‘𝐺)) |
| 10 | 6 | dmeqd 5916 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → dom (iEdg‘𝑠) = dom (iEdg‘𝑆)) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → dom (iEdg‘𝑠) = dom (iEdg‘𝑆)) |
| 12 | 9, 11 | reseq12d 5998 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
| 13 | 7, 12 | eqeq12d 2753 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))) |
| 14 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (Edg‘𝑠) = (Edg‘𝑆)) |
| 15 | 1 | pweqd 4617 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → 𝒫 (Vtx‘𝑠) = 𝒫 (Vtx‘𝑆)) |
| 16 | 14, 15 | sseq12d 4017 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆))) |
| 17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆))) |
| 18 | 5, 13, 17 | 3anbi123d 1438 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑔 = 𝐺) → (((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠)) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆)))) |
| 19 | | df-subgr 29285 |
. . . 4
⊢ SubGraph
= {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫
(Vtx‘𝑠))} |
| 20 | 18, 19 | brabga 5539 |
. . 3
⊢ ((𝑆 ∈ 𝑈 ∧ 𝐺 ∈ 𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
| 21 | 20 | ancoms 458 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
| 22 | | issubgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝑆) |
| 23 | | issubgr.a |
. . . 4
⊢ 𝐴 = (Vtx‘𝐺) |
| 24 | 22, 23 | sseq12i 4014 |
. . 3
⊢ (𝑉 ⊆ 𝐴 ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
| 25 | | issubgr.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝑆) |
| 26 | | issubgr.b |
. . . . 5
⊢ 𝐵 = (iEdg‘𝐺) |
| 27 | 25 | dmeqi 5915 |
. . . . 5
⊢ dom 𝐼 = dom (iEdg‘𝑆) |
| 28 | 26, 27 | reseq12i 5995 |
. . . 4
⊢ (𝐵 ↾ dom 𝐼) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) |
| 29 | 25, 28 | eqeq12i 2755 |
. . 3
⊢ (𝐼 = (𝐵 ↾ dom 𝐼) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
| 30 | | issubgr.e |
. . . 4
⊢ 𝐸 = (Edg‘𝑆) |
| 31 | 22 | pweqi 4616 |
. . . 4
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝑆) |
| 32 | 30, 31 | sseq12i 4014 |
. . 3
⊢ (𝐸 ⊆ 𝒫 𝑉 ↔ (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆)) |
| 33 | 24, 29, 32 | 3anbi123i 1156 |
. 2
⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 34 | 21, 33 | bitr4di 289 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |