MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr Structured version   Visualization version   GIF version

Theorem issubgr 27619
Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
issubgr ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))

Proof of Theorem issubgr
Dummy variables 𝑠 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6768 . . . . . . 7 (𝑠 = 𝑆 → (Vtx‘𝑠) = (Vtx‘𝑆))
21adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑠) = (Vtx‘𝑆))
3 fveq2 6768 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
43adantl 481 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑔) = (Vtx‘𝐺))
52, 4sseq12d 3958 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)))
6 fveq2 6768 . . . . . . 7 (𝑠 = 𝑆 → (iEdg‘𝑠) = (iEdg‘𝑆))
76adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑠) = (iEdg‘𝑆))
8 fveq2 6768 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
98adantl 481 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑔) = (iEdg‘𝐺))
106dmeqd 5811 . . . . . . . 8 (𝑠 = 𝑆 → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
1110adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
129, 11reseq12d 5889 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
137, 12eqeq12d 2755 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
14 fveq2 6768 . . . . . . 7 (𝑠 = 𝑆 → (Edg‘𝑠) = (Edg‘𝑆))
151pweqd 4557 . . . . . . 7 (𝑠 = 𝑆 → 𝒫 (Vtx‘𝑠) = 𝒫 (Vtx‘𝑆))
1614, 15sseq12d 3958 . . . . . 6 (𝑠 = 𝑆 → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716adantr 480 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
185, 13, 173anbi123d 1434 . . . 4 ((𝑠 = 𝑆𝑔 = 𝐺) → (((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠)) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
19 df-subgr 27616 . . . 4 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
2018, 19brabga 5448 . . 3 ((𝑆𝑈𝐺𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
2120ancoms 458 . 2 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
22 issubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
23 issubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
2422, 23sseq12i 3955 . . 3 (𝑉𝐴 ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
25 issubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
26 issubgr.b . . . . 5 𝐵 = (iEdg‘𝐺)
2725dmeqi 5810 . . . . 5 dom 𝐼 = dom (iEdg‘𝑆)
2826, 27reseq12i 5886 . . . 4 (𝐵 ↾ dom 𝐼) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))
2925, 28eqeq12i 2757 . . 3 (𝐼 = (𝐵 ↾ dom 𝐼) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
30 issubgr.e . . . 4 𝐸 = (Edg‘𝑆)
3122pweqi 4556 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝑆)
3230, 31sseq12i 3955 . . 3 (𝐸 ⊆ 𝒫 𝑉 ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
3324, 29, 323anbi123i 1153 . 2 ((𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
3421, 33bitr4di 288 1 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wss 3891  𝒫 cpw 4538   class class class wbr 5078  dom cdm 5588  cres 5590  cfv 6430  Vtxcvtx 27347  iEdgciedg 27348  Edgcedg 27398   SubGraph csubgr 27615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-dm 5598  df-res 5600  df-iota 6388  df-fv 6438  df-subgr 27616
This theorem is referenced by:  issubgr2  27620  subgrprop  27621  uhgrissubgr  27623  egrsubgr  27625  0grsubgr  27626  uhgrspan1  27651
  Copyright terms: Public domain W3C validator