MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submabas Structured version   Visualization version   GIF version

Theorem submabas 22493
Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
submabas.a 𝐴 = (𝑁 Mat 𝑅)
submabas.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submabas ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)

Proof of Theorem submabas
StepHypRef Expression
1 eqid 2731 . 2 (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅)
2 eqid 2731 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2731 . 2 (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅))
4 submabas.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 submabas.b . . . . 5 𝐵 = (Base‘𝐴)
64, 5matrcl 22327 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
76simpld 494 . . 3 (𝑀𝐵𝑁 ∈ Fin)
8 ssfi 9082 . . 3 ((𝑁 ∈ Fin ∧ 𝐷𝑁) → 𝐷 ∈ Fin)
97, 8sylan 580 . 2 ((𝑀𝐵𝐷𝑁) → 𝐷 ∈ Fin)
106simprd 495 . . 3 (𝑀𝐵𝑅 ∈ V)
1110adantr 480 . 2 ((𝑀𝐵𝐷𝑁) → 𝑅 ∈ V)
12 ssel 3923 . . . . . 6 (𝐷𝑁 → (𝑖𝐷𝑖𝑁))
1312adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷𝑖𝑁))
1413imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷) → 𝑖𝑁)
15143adant3 1132 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑖𝑁)
16 ssel 3923 . . . . . 6 (𝐷𝑁 → (𝑗𝐷𝑗𝑁))
1716adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑗𝐷𝑗𝑁))
1817imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑗𝐷) → 𝑗𝑁)
19183adant2 1131 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑗𝑁)
205eleq2i 2823 . . . . . 6 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2120biimpi 216 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2221adantr 480 . . . 4 ((𝑀𝐵𝐷𝑁) → 𝑀 ∈ (Base‘𝐴))
23223ad2ant1 1133 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑀 ∈ (Base‘𝐴))
244, 2matecl 22340 . . 3 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2515, 19, 23, 24syl3anc 1373 . 2 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
261, 2, 3, 9, 11, 25matbas2d 22338 1 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  Basecbs 17120   Mat cmat 22322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684  df-mat 22323
This theorem is referenced by:  smadiadetlem3lem0  22580  smadiadet  22585  madjusmdetlem1  33840
  Copyright terms: Public domain W3C validator