|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > submabas | Structured version Visualization version GIF version | ||
| Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| submabas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| submabas.b | ⊢ 𝐵 = (Base‘𝐴) | 
| Ref | Expression | 
|---|---|
| submabas | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅) | |
| 2 | eqid 2736 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2736 | . 2 ⊢ (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅)) | |
| 4 | submabas.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | submabas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | 4, 5 | matrcl 22417 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | 
| 7 | 6 | simpld 494 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) | 
| 8 | ssfi 9214 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) | |
| 9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) | 
| 10 | 6 | simprd 495 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) | 
| 11 | 10 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑅 ∈ V) | 
| 12 | ssel 3976 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) | 
| 14 | 13 | imp 406 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝑁) | 
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑖 ∈ 𝑁) | 
| 16 | ssel 3976 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) | 
| 18 | 17 | imp 406 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) | 
| 19 | 18 | 3adant2 1131 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) | 
| 20 | 5 | eleq2i 2832 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) | 
| 21 | 20 | biimpi 216 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) | 
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑀 ∈ (Base‘𝐴)) | 
| 23 | 22 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑀 ∈ (Base‘𝐴)) | 
| 24 | 4, 2 | matecl 22432 | . . 3 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) | 
| 25 | 15, 19, 23, 24 | syl3anc 1372 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) | 
| 26 | 1, 2, 3, 9, 11, 25 | matbas2d 22430 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 Fincfn 8986 Basecbs 17248 Mat cmat 22412 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-prds 17493 df-pws 17495 df-sra 21173 df-rgmod 21174 df-dsmm 21753 df-frlm 21768 df-mat 22413 | 
| This theorem is referenced by: smadiadetlem3lem0 22672 smadiadet 22677 madjusmdetlem1 33827 | 
| Copyright terms: Public domain | W3C validator |