| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submabas | Structured version Visualization version GIF version | ||
| Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| submabas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| submabas.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| submabas | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅) | |
| 2 | eqid 2729 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅)) | |
| 4 | submabas.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | submabas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | 4, 5 | matrcl 22297 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 7 | 6 | simpld 494 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 8 | ssfi 9087 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) | |
| 9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) |
| 10 | 6 | simprd 495 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
| 11 | 10 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑅 ∈ V) |
| 12 | ssel 3929 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) |
| 14 | 13 | imp 406 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝑁) |
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑖 ∈ 𝑁) |
| 16 | ssel 3929 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) |
| 18 | 17 | imp 406 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) |
| 19 | 18 | 3adant2 1131 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) |
| 20 | 5 | eleq2i 2820 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
| 21 | 20 | biimpi 216 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 23 | 22 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑀 ∈ (Base‘𝐴)) |
| 24 | 4, 2 | matecl 22310 | . . 3 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
| 25 | 15, 19, 23, 24 | syl3anc 1373 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
| 26 | 1, 2, 3, 9, 11, 25 | matbas2d 22308 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Fincfn 8872 Basecbs 17120 Mat cmat 22292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 df-mat 22293 |
| This theorem is referenced by: smadiadetlem3lem0 22550 smadiadet 22555 madjusmdetlem1 33794 |
| Copyright terms: Public domain | W3C validator |