Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > submabas | Structured version Visualization version GIF version |
Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
submabas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
submabas.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
submabas | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅) | |
2 | eqid 2740 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2740 | . 2 ⊢ (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅)) | |
4 | submabas.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | submabas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
6 | 4, 5 | matrcl 21557 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
7 | 6 | simpld 495 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
8 | ssfi 8938 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) | |
9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) |
10 | 6 | simprd 496 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
11 | 10 | adantr 481 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑅 ∈ V) |
12 | ssel 3919 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) | |
13 | 12 | adantl 482 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) |
14 | 13 | imp 407 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝑁) |
15 | 14 | 3adant3 1131 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑖 ∈ 𝑁) |
16 | ssel 3919 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) | |
17 | 16 | adantl 482 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) |
18 | 17 | imp 407 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) |
19 | 18 | 3adant2 1130 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) |
20 | 5 | eleq2i 2832 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
21 | 20 | biimpi 215 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
23 | 22 | 3ad2ant1 1132 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑀 ∈ (Base‘𝐴)) |
24 | 4, 2 | matecl 21572 | . . 3 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
25 | 15, 19, 23, 24 | syl3anc 1370 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
26 | 1, 2, 3, 9, 11, 25 | matbas2d 21570 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 ‘cfv 6432 (class class class)co 7271 ∈ cmpo 7273 Fincfn 8716 Basecbs 16910 Mat cmat 21552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-ot 4576 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-hom 16984 df-cco 16985 df-0g 17150 df-prds 17156 df-pws 17158 df-sra 20432 df-rgmod 20433 df-dsmm 20937 df-frlm 20952 df-mat 21553 |
This theorem is referenced by: smadiadetlem3lem0 21812 smadiadet 21817 madjusmdetlem1 31773 |
Copyright terms: Public domain | W3C validator |