![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submabas | Structured version Visualization version GIF version |
Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
submabas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
submabas.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
submabas | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . 2 ⊢ (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅) | |
2 | eqid 2778 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2778 | . 2 ⊢ (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅)) | |
4 | submabas.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | submabas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
6 | 4, 5 | matrcl 20633 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
7 | 6 | simpld 490 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
8 | ssfi 8470 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) | |
9 | 7, 8 | sylan 575 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝐷 ∈ Fin) |
10 | 6 | simprd 491 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ V) |
11 | 10 | adantr 474 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑅 ∈ V) |
12 | ssel 3815 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) | |
13 | 12 | adantl 475 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁)) |
14 | 13 | imp 397 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝑁) |
15 | 14 | 3adant3 1123 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑖 ∈ 𝑁) |
16 | ssel 3815 | . . . . . 6 ⊢ (𝐷 ⊆ 𝑁 → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) | |
17 | 16 | adantl 475 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁)) |
18 | 17 | imp 397 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) |
19 | 18 | 3adant2 1122 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝑁) |
20 | 5 | eleq2i 2851 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
21 | 20 | biimpi 208 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
22 | 21 | adantr 474 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
23 | 22 | 3ad2ant1 1124 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → 𝑀 ∈ (Base‘𝐴)) |
24 | 4, 2 | matecl 20646 | . . 3 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
25 | 15, 19, 23, 24 | syl3anc 1439 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
26 | 1, 2, 3, 9, 11, 25 | matbas2d 20644 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ⊆ wss 3792 ‘cfv 6137 (class class class)co 6924 ↦ cmpt2 6926 Fincfn 8243 Basecbs 16266 Mat cmat 20628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-hom 16373 df-cco 16374 df-0g 16499 df-prds 16505 df-pws 16507 df-sra 19580 df-rgmod 19581 df-dsmm 20486 df-frlm 20501 df-mat 20629 |
This theorem is referenced by: smadiadetlem3lem0 20888 smadiadet 20893 madjusmdetlem1 30499 |
Copyright terms: Public domain | W3C validator |