MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submabas Structured version   Visualization version   GIF version

Theorem submabas 22521
Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
submabas.a 𝐴 = (𝑁 Mat 𝑅)
submabas.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submabas ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)

Proof of Theorem submabas
StepHypRef Expression
1 eqid 2736 . 2 (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅)
2 eqid 2736 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2736 . 2 (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅))
4 submabas.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 submabas.b . . . . 5 𝐵 = (Base‘𝐴)
64, 5matrcl 22355 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
76simpld 494 . . 3 (𝑀𝐵𝑁 ∈ Fin)
8 ssfi 9192 . . 3 ((𝑁 ∈ Fin ∧ 𝐷𝑁) → 𝐷 ∈ Fin)
97, 8sylan 580 . 2 ((𝑀𝐵𝐷𝑁) → 𝐷 ∈ Fin)
106simprd 495 . . 3 (𝑀𝐵𝑅 ∈ V)
1110adantr 480 . 2 ((𝑀𝐵𝐷𝑁) → 𝑅 ∈ V)
12 ssel 3957 . . . . . 6 (𝐷𝑁 → (𝑖𝐷𝑖𝑁))
1312adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷𝑖𝑁))
1413imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷) → 𝑖𝑁)
15143adant3 1132 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑖𝑁)
16 ssel 3957 . . . . . 6 (𝐷𝑁 → (𝑗𝐷𝑗𝑁))
1716adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑗𝐷𝑗𝑁))
1817imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑗𝐷) → 𝑗𝑁)
19183adant2 1131 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑗𝑁)
205eleq2i 2827 . . . . . 6 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2120biimpi 216 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2221adantr 480 . . . 4 ((𝑀𝐵𝐷𝑁) → 𝑀 ∈ (Base‘𝐴))
23223ad2ant1 1133 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑀 ∈ (Base‘𝐴))
244, 2matecl 22368 . . 3 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2515, 19, 23, 24syl3anc 1373 . 2 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
261, 2, 3, 9, 11, 25matbas2d 22366 1 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  cfv 6536  (class class class)co 7410  cmpo 7412  Fincfn 8964  Basecbs 17233   Mat cmat 22350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-mat 22351
This theorem is referenced by:  smadiadetlem3lem0  22608  smadiadet  22613  madjusmdetlem1  33863
  Copyright terms: Public domain W3C validator