MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submabas Structured version   Visualization version   GIF version

Theorem submabas 22600
Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
submabas.a 𝐴 = (𝑁 Mat 𝑅)
submabas.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submabas ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)

Proof of Theorem submabas
StepHypRef Expression
1 eqid 2735 . 2 (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅)
2 eqid 2735 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2735 . 2 (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅))
4 submabas.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 submabas.b . . . . 5 𝐵 = (Base‘𝐴)
64, 5matrcl 22432 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
76simpld 494 . . 3 (𝑀𝐵𝑁 ∈ Fin)
8 ssfi 9212 . . 3 ((𝑁 ∈ Fin ∧ 𝐷𝑁) → 𝐷 ∈ Fin)
97, 8sylan 580 . 2 ((𝑀𝐵𝐷𝑁) → 𝐷 ∈ Fin)
106simprd 495 . . 3 (𝑀𝐵𝑅 ∈ V)
1110adantr 480 . 2 ((𝑀𝐵𝐷𝑁) → 𝑅 ∈ V)
12 ssel 3989 . . . . . 6 (𝐷𝑁 → (𝑖𝐷𝑖𝑁))
1312adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷𝑖𝑁))
1413imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷) → 𝑖𝑁)
15143adant3 1131 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑖𝑁)
16 ssel 3989 . . . . . 6 (𝐷𝑁 → (𝑗𝐷𝑗𝑁))
1716adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑗𝐷𝑗𝑁))
1817imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑗𝐷) → 𝑗𝑁)
19183adant2 1130 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑗𝑁)
205eleq2i 2831 . . . . . 6 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2120biimpi 216 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2221adantr 480 . . . 4 ((𝑀𝐵𝐷𝑁) → 𝑀 ∈ (Base‘𝐴))
23223ad2ant1 1132 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑀 ∈ (Base‘𝐴))
244, 2matecl 22447 . . 3 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2515, 19, 23, 24syl3anc 1370 . 2 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
261, 2, 3, 9, 11, 25matbas2d 22445 1 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  cfv 6563  (class class class)co 7431  cmpo 7433  Fincfn 8984  Basecbs 17245   Mat cmat 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mat 22428
This theorem is referenced by:  smadiadetlem3lem0  22687  smadiadet  22692  madjusmdetlem1  33788
  Copyright terms: Public domain W3C validator