| Metamath
Proof Explorer Theorem List (p. 226 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mdetunilem3 22501* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) ⇒ ⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝐵) ∧ (𝐺 ∈ 𝐵 ∧ 𝐻 ∈ 𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((𝐹 ↾ ({𝐻} × 𝑁)) ∘f + (𝐺 ↾ ({𝐻} × 𝑁)))) ∧ ((𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐹 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐷‘𝐸) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
| Theorem | mdetunilem4 22502* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) ⇒ ⊢ ((𝜑 ∧ (𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵) ∧ (𝐻 ∈ 𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘f · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐷‘𝐸) = (𝐹 · (𝐷‘𝐺))) | ||
| Theorem | mdetunilem5 22503* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → 𝐸 ∈ 𝑁) & ⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾)) ⇒ ⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))) | ||
| Theorem | mdetunilem6 22504* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → (𝐸 ∈ 𝑁 ∧ 𝐹 ∈ 𝑁 ∧ 𝐸 ≠ 𝐹)) & ⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → (𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾)) & ⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐼 ∈ 𝐾) ⇒ ⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))))) | ||
| Theorem | mdetunilem7 22505* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) ⇒ ⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝐸‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘𝐹))) | ||
| Theorem | mdetunilem8 22506* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 0 ) ⇒ ⊢ ((𝜑 ∧ 𝐸:𝑁⟶𝑁) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if((𝐸‘𝑎) = 𝑏, 1 , 0 ))) = 0 ) | ||
| Theorem | mdetunilem9 22507* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 0 ) & ⊢ 𝑌 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )} ⇒ ⊢ (𝜑 → 𝐷 = (𝐵 × { 0 })) | ||
| Theorem | mdetuni0 22508* | Lemma for mdetuni 22509. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ 𝐸 = (𝑁 maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) | ||
| Theorem | mdetuni 22509* | According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ 𝐸 = (𝑁 maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) ⇒ ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) | ||
| Theorem | mdetmul 22510 | Multiplicativity of the determinant function: the determinant of a matrix product of square matrices equals the product of their determinants. Proposition 4.15 in [Lang] p. 517. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐷‘(𝐹 ∙ 𝐺)) = ((𝐷‘𝐹) · (𝐷‘𝐺))) | ||
| Theorem | m2detleiblem1 22511 | Lemma 1 for m2detleib 22518. (Contributed by AV, 12-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) | ||
| Theorem | m2detleiblem5 22512 | Lemma 5 for m2detleib 22518. (Contributed by AV, 20-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = 1 ) | ||
| Theorem | m2detleiblem6 22513 | Lemma 6 for m2detleib 22518. (Contributed by AV, 20-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) | ||
| Theorem | m2detleiblem7 22514 | Lemma 7 for m2detleib 22518. (Contributed by AV, 20-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋 − 𝑍)) | ||
| Theorem | m2detleiblem2 22515* | Lemma 2 for m2detleib 22518. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) | ||
| Theorem | m2detleiblem3 22516* | Lemma 3 for m2detleib 22518. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (+g‘𝐺) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉} ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2))) | ||
| Theorem | m2detleiblem4 22517* | Lemma 4 for m2detleib 22518. (Contributed by AV, 20-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (+g‘𝐺) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉} ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2))) | ||
| Theorem | m2detleib 22518 | Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ − = (-g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) | ||
| Syntax | cmadu 22519 | Syntax for the matrix adjugate/adjunct function. |
| class maAdju | ||
| Syntax | cminmar1 22520 | Syntax for the minor matrices of a square matrix. |
| class minMatR1 | ||
| Definition | df-madu 22521* | Define the adjugate or adjunct (matrix of cofactors) of a square matrix. This definition gives the standard cofactors, however the internal minors are not the standard minors, see definition in [Lang] p. 518. (Contributed by Stefan O'Rear, 7-Sep-2015.) (Revised by SO, 10-Jul-2018.) |
| ⊢ maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))))) | ||
| Definition | df-minmar1 22522* | Define the matrices whose determinants are the minors of a square matrix. In contrast to the standard definition of minors, a row is replaced by 0's and one 1 instead of deleting the column and row (e.g., definition in [Lang] p. 515). By this, the determinant of such a matrix is equal to the minor determined in the standard way (as determinant of a submatrix, see df-subma 22464- note that the matrix is transposed compared with the submatrix defined in df-subma 22464, but this does not matter because the determinants are the same, see mdettpos 22498). Such matrices are used in the definition of an adjunct of a square matrix, see df-madu 22521. (Contributed by AV, 27-Dec-2018.) |
| ⊢ minMatR1 = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)))))) | ||
| Theorem | mndifsplit 22523 | Lemma for maducoeval2 22527. (Contributed by SO, 16-Jul-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) | ||
| Theorem | madufval 22524* | First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) | ||
| Theorem | maduval 22525* | Second substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) | ||
| Theorem | maducoeval 22526* | An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) | ||
| Theorem | maducoeval2 22527* | An entry of the adjunct (cofactor) matrix. (Contributed by SO, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))))) | ||
| Theorem | maduf 22528 | Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) | ||
| Theorem | madutpos 22529 | The adjuct of a transposed matrix is the transposition of the adjunct of the matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽‘𝑀)) | ||
| Theorem | madugsum 22530* | The determinant of a matrix with a row 𝐿 consisting of the same element 𝑋 is the sum of the elements of the 𝐿-th column of the adjunct of the matrix multiplied with 𝑋. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐿 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ 𝑁 ↦ (𝑋 · (𝑖(𝐽‘𝑀)𝐿)))) = (𝐷‘(𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))))) | ||
| Theorem | madurid 22531 | Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ · = (.r‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing) → (𝑀 · (𝐽‘𝑀)) = ((𝐷‘𝑀) ∙ 1 )) | ||
| Theorem | madulid 22532 | Multiplying the adjunct of a matrix with the matrix results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ · = (.r‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing) → ((𝐽‘𝑀) · 𝑀) = ((𝐷‘𝑀) ∙ 1 )) | ||
| Theorem | minmar1fval 22533* | First substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝑄 = (𝑚 ∈ 𝐵 ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))) | ||
| Theorem | minmar1val0 22534* | Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) | ||
| Theorem | minmar1val 22535* | Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) | ||
| Theorem | minmar1eval 22536 | An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) | ||
| Theorem | minmar1marrep 22537 | The minor matrix is a special case of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019.) (Revised by AV, 4-Jul-2022.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅) 1 )) | ||
| Theorem | minmar1cl 22538 | Closure of the row replacement function for square matrices: The matrix for a minor is a matrix. (Contributed by AV, 13-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐿) ∈ 𝐵) | ||
| Theorem | maducoevalmin1 22539 | The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) | ||
According to Wikipedia ("Laplace expansion", 08-Mar-2019, https://en.wikipedia.org/wiki/Laplace_expansion) "In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression for the determinant det(B) of an n x n -matrix B that is a weighted sum of the determinants of n sub-matrices of B, each of size (n-1) x (n-1)". The expansion is usually performed for a row of matrix B (alternately for a column of matrix B). The mentioned "sub-matrices" are the matrices resultung from deleting the i-th row and the j-th column of matrix B. The mentioned "weights" (factors/coefficients) are the elements at position i and j in matrix B. If the expansion is performed for a row, the coefficients are the elements of the selected row. In the following, only the case where the row for the expansion contains only the zero element of the underlying ring except at the diagonal position. By this, the sum for the Laplace expansion is reduced to one summand, consisting of the element at the diagonal position multiplied with the determinant of the corresponding submatrix, see smadiadetg 22560 or smadiadetr 22562. | ||
| Theorem | symgmatr01lem 22540* | Lemma for symgmatr01 22541. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵)) | ||
| Theorem | symgmatr01 22541* | Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 (𝑘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑘)) = 0 )) | ||
| Theorem | gsummatr01lem1 22542* | Lemma A for gsummatr01 22546. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} ⇒ ⊢ ((𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁) → (𝑄‘𝑋) ∈ 𝑁) | ||
| Theorem | gsummatr01lem2 22543* | Lemma B for gsummatr01 22546. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} ⇒ ⊢ ((𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑋𝐴(𝑄‘𝑋)) ∈ (Base‘𝐺))) | ||
| Theorem | gsummatr01lem3 22544* | Lemma 1 for gsummatr01 22546. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = (Base‘𝐺) ⇒ ⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)))) | ||
| Theorem | gsummatr01lem4 22545* | Lemma 2 for gsummatr01 22546. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = (Base‘𝐺) ⇒ ⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))) | ||
| Theorem | gsummatr01 22546* | Lemma 1 for smadiadetlem4 22556. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = (Base‘𝐺) ⇒ ⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) | ||
| Theorem | marep01ma 22547* | Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵) | ||
| Theorem | smadiadetlem0 22548* | Lemma 0 for smadiadet 22557: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)))) = 0 )) | ||
| Theorem | smadiadetlem1 22549* | Lemma 1 for smadiadet 22557: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))) ∈ (Base‘𝑅)) | ||
| Theorem | smadiadetlem1a 22550* | Lemma 1a for smadiadet 22557: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) | ||
| Theorem | smadiadetlem2 22551* | Lemma 2 for smadiadet 22557: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) | ||
| Theorem | smadiadetlem3lem0 22552* | Lemma 0 for smadiadetlem3 22555. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ 𝑊) → (((𝑌 ∘ 𝑍)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑄‘𝑛))))) ∈ (Base‘𝑅)) | ||
| Theorem | smadiadetlem3lem1 22553* | Lemma 1 for smadiadetlem3 22555. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))):𝑊⟶(Base‘𝑅)) | ||
| Theorem | smadiadetlem3lem2 22554* | Lemma 2 for smadiadetlem3 22555. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ran (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) ⊆ ((Cntz‘𝑅)‘ran (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) | ||
| Theorem | smadiadetlem3 22555* | Lemma 3 for smadiadet 22557. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) | ||
| Theorem | smadiadetlem4 22556* | Lemma 4 for smadiadet 22557. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) | ||
| Theorem | smadiadet 22557 | The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾))) | ||
| Theorem | smadiadetglem1 22558 | Lemma 1 for smadiadetg 22560. (Contributed by AV, 13-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) | ||
| Theorem | smadiadetglem2 22559 | Lemma 2 for smadiadetg 22560. (Contributed by AV, 14-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)))) | ||
| Theorem | smadiadetg 22560 | The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. (Contributed by AV, 14-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝐷‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆 · (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) | ||
| Theorem | smadiadetg0 22561 | Lemma for smadiadetr 22562: version of smadiadetg 22560 with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019.) |
| ⊢ 𝑅 ∈ CRing ⇒ ⊢ ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) | ||
| Theorem | smadiadetr 22562 | The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 22560. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.) |
| ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) | ||
| Theorem | invrvald 22563 | If a matrix multiplied with a given matrix (from the left as well as from the right) results in the identity matrix, this matrix is the inverse (matrix) of the given matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 · 𝑌) = 1 ) & ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ (𝐼‘𝑋) = 𝑌)) | ||
| Theorem | matinv 22564 | The inverse of a matrix is the adjunct of the matrix multiplied with the inverse of the determinant of the matrix if the determinant is a unit in the underlying ring. Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (Unit‘𝐴) & ⊢ 𝑉 = (Unit‘𝑅) & ⊢ 𝐻 = (invr‘𝑅) & ⊢ 𝐼 = (invr‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝑀 ∈ 𝑈 ∧ (𝐼‘𝑀) = ((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀)))) | ||
| Theorem | matunit 22565 | A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (Unit‘𝐴) & ⊢ 𝑉 = (Unit‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑈 ↔ (𝐷‘𝑀) ∈ 𝑉)) | ||
In the following, Cramer's rule cramer 22578 is proven. According to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule 22578: "[Cramer's rule] ... expresses the [unique] solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations." The outline of the proof for systems of linear equations with coefficients from a commutative ring, according to the proof in Wikipedia (https://en.wikipedia.org/wiki/Cramer's_rule#A_short_proof), 22578 is as follows: The system of linear equations 𝐴 × 𝑋 = 𝐵 to be solved shall be given by the N x N coefficient matrix 𝐴 and the N-dimensional vector 𝐵. Let (𝐴‘𝑖) be the matrix obtained by replacing the i-th column of the coefficient matrix 𝐴 by the right-hand side vector 𝐵. Additionally, let (𝑋‘𝑖) be the matrix obtained by replacing the i-th column of the identity matrix by the solution vector 𝑋, with 𝑋 = (𝑥‘𝑖). Finally, it is assumed that det 𝐴 is a unit in the underlying ring. With these definitions, it follows that 𝐴 × (𝑋‘𝑖) = (𝐴‘𝑖) (cramerimplem2 22571), using matrix multiplication (mamuval 22280) and multiplication of a vector with a matrix (mulmarep1gsum2 22461). By using the multiplicativity of the determinant (mdetmul 22510) it follows that det (𝐴‘𝑖) = det (𝐴 × (𝑋‘𝑖)) = det 𝐴 · det (𝑋‘𝑖) (cramerimplem3 22572). Furthermore, it follows that det (𝑋‘𝑖) = (𝑥‘𝑖) (cramerimplem1 22570). To show this, a special case of the Laplace expansion is used (smadiadetg 22560). From these equations and the cancellation law for division in a ring (dvrcan3 20319) it follows that (𝑥‘𝑖) = det (𝑋‘𝑖) = det (𝐴‘𝑖) / det 𝐴. This is the right to left implication (cramerimp 22573, cramerlem1 22574, cramerlem2 22575) of Cramer's rule (cramer 22578). The left to right implication is shown by cramerlem3 22576, using the fact that a solution of the system of linear equations exists (slesolex 22569). Notice that for the special case of 0-dimensional matrices/vectors only the left to right implication is valid (see cramer0 22577), because assuming the right-hand side of the implication ((𝑋 · 𝑍) = 𝑌), 𝑍 could be anything (see mavmul0g 22440). | ||
| Theorem | slesolvec 22566 | Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) ⇒ ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) | ||
| Theorem | slesolinv 22567 | The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 28-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐼 = (invr‘𝐴) ⇒ ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼‘𝑋) · 𝑌)) | ||
| Theorem | slesolinvbi 22568 | The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐼 = (invr‘𝐴) ⇒ ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌 ↔ 𝑍 = ((𝐼‘𝑋) · 𝑌))) | ||
| Theorem | slesolex 22569* | Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐷 = (𝑁 maDet 𝑅) ⇒ ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌) | ||
| Theorem | cramerimplem1 22570 | Lemma 1 for cramerimp 22573: The determinant of the identity matrix with the ith column replaced by a (column) vector equals the ith component of the vector. (Contributed by AV, 15-Feb-2019.) (Revised by AV, 5-Jul-2022.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐸 = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) & ⊢ 𝐷 = (𝑁 maDet 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐷‘𝐸) = (𝑍‘𝐼)) | ||
| Theorem | cramerimplem2 22571 | Lemma 2 for cramerimp 22573: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐸 = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) & ⊢ 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻) | ||
| Theorem | cramerimplem3 22572 | Lemma 3 for cramerimp 22573: The determinant of the matrix of a system of linear equations multiplied with the determinant of the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐸 = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) & ⊢ 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ ⊗ = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷‘𝑋) ⊗ (𝐷‘𝐸)) = (𝐷‘𝐻)) | ||
| Theorem | cramerimp 22573 | One direction of Cramer's rule (according to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations."): The ith component of the solution vector of a system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the righthand side vector of the system of linear equations divided by the determinant of the matrix of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐸 = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) & ⊢ 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝐼) = ((𝐷‘𝐻) / (𝐷‘𝑋))) | ||
| Theorem | cramerlem1 22574* | Lemma 1 for cramer 22578. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) | ||
| Theorem | cramerlem2 22575* | Lemma 2 for cramer 22578. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | ||
| Theorem | cramerlem3 22576* | Lemma 3 for cramer 22578. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) | ||
| Theorem | cramer0 22577* | Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) | ||
| Theorem | cramer 22578* | Cramer's rule. According to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the [unique] solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations." If it is assumed that a (unique) solution exists, it can be obtained by Cramer's rule (see also cramerimp 22573). On the other hand, if a vector can be constructed by Cramer's rule, it is a solution of the system of linear equations, so at least one solution exists. The uniqueness is ensured by considering only systems of linear equations whose matrix has a unit (of the underlying ring) as determinant, see matunit 22565 or slesolinv 22567. For fields as underlying rings, this requirement is equivalent to the determinant not being 0. Theorem 4.4 in [Lang] p. 513. This is Metamath 100 proof #97. (Contributed by Alexander van der Vekens, 21-Feb-2019.) (Revised by Alexander van der Vekens, 1-Mar-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ≠ ∅) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) ↔ (𝑋 · 𝑍) = 𝑌)) | ||
A polynomial matrix or matrix of polynomials is a matrix whose elements are univariate (or multivariate) polynomials. See Wikipedia "Polynomial matrix" https://en.wikipedia.org/wiki/Polynomial_matrix (18-Nov-2019). In this section, only square matrices whose elements are univariate polynomials are considered. Usually, the ring of such matrices, the ring of n x n matrices over the polynomial ring over a ring 𝑅, is denoted by M(n, R[t]). The elements of this ring are called "polynomial matrices (over the ring 𝑅)" in the following. In Metamath notation, this ring is defined by (𝑁 Mat (Poly1‘𝑅)), usually represented by the class variable 𝐶 (or 𝑌, if 𝐶 is already occupied): 𝐶 = (𝑁 Mat 𝑃) with 𝑃 = (Poly1‘𝑅). | ||
| Theorem | pmatring 22579 | The set of polynomial matrices over a ring is a ring. (Contributed by AV, 6-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) | ||
| Theorem | pmatlmod 22580 | The set of polynomial matrices over a ring is a left module. (Contributed by AV, 6-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod) | ||
| Theorem | pmatassa 22581 | The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ AssAlg) | ||
| Theorem | pmat0op 22582* | The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐶) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 0 )) | ||
| Theorem | pmat1op 22583* | The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 1 = (1r‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) | ||
| Theorem | pmat1ovd 22584 | Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 1 = (1r‘𝑃) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ 𝑈 = (1r‘𝐶) ⇒ ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) | ||
| Theorem | pmat0opsc 22585* | The zero polynomial matrix over a ring represented as operation with "lifted scalars" (i.e. elements of the ring underlying the polynomial ring embedded into the polynomial ring by the scalar injection/algebra scalar lifting function algSc). (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐶) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐴‘ 0 ))) | ||
| Theorem | pmat1opsc 22586* | The identity polynomial matrix over a ring represented as operation with "lifted scalars". (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (𝐴‘ 1 ), (𝐴‘ 0 )))) | ||
| Theorem | pmat1ovscd 22587 | Entries of the identity polynomial matrix over a ring represented with "lifted scalars", deduction form. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ 𝑈 = (1r‘𝐶) ⇒ ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, (𝐴‘ 1 ), (𝐴‘ 0 ))) | ||
| Theorem | pmatcoe1fsupp 22588* | For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )) | ||
| Theorem | 1pmatscmul 22589 | The scalar product of the identity polynomial matrix with a polynomial is a polynomial matrix. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ 1 = (1r‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑄 ∗ 1 ) ∈ 𝐵) | ||
A constant polynomial matrix is a polynomial matrix whose elements are constant polynomials, i.e., polynomials with no indeterminates. Constant polynomials are obtained by "lifting" a "scalar" (i.e. an element of the underlying ring) into the polynomial ring/algebra by a "scalar injection", i.e., applying the "algebra scalar injection function" algSc (see df-ascl 21764) to a scalar 𝐴 ∈ 𝑅: ((algSc‘𝑃)‘𝐴). Analogously, constant polynomial matrices (over the ring 𝑅) are obtained by "lifting" matrices over the ring 𝑅 by the function matToPolyMat (see df-mat2pmat 22594), called "matrix transformation" in the following. In this section it is shown that the set 𝑆 = (𝑁 ConstPolyMat 𝑅) of constant polynomial 𝑁 x 𝑁 matrices over the ring 𝑅 is a subring of the ring of polynomial 𝑁 x 𝑁 matrices over the ring 𝑅 (cpmatsrgpmat 22608) and that 𝑇 = (𝑁 matToPolyMat 𝑅) is a ring isomorphism from the ring of matrices over a ring 𝑅 onto the ring of constant polynomial matrices over the ring 𝑅 (see m2cpmrngiso 22645). Thus, the ring of matrices over a commutative ring is isomorphic to the ring of scalar matrices over the same ring, see matcpmric 22646. Finally, 𝐼 = (𝑁 cPolyMatToMat 𝑅), the transformation of a constant polynomial matrix into a matrix, is the inverse function of the matrix transformation 𝑇 = (𝑁 matToPolyMat 𝑅), see m2cpminv 22647. | ||
| Syntax | ccpmat 22590 | Extend class notation with the set of all constant polynomial matrices. |
| class ConstPolyMat | ||
| Syntax | cmat2pmat 22591 | Extend class notation with the transformation of a matrix into a matrix of polynomials. |
| class matToPolyMat | ||
| Syntax | ccpmat2mat 22592 | Extend class notation with the transformation of a constant polynomial matrix into a matrix. |
| class cPolyMatToMat | ||
| Definition | df-cpmat 22593* | The set of all constant polynomial matrices, which are all matrices whose entries are constant polynomials (or "scalar polynomials", see ply1sclf 22171). (Contributed by AV, 15-Nov-2019.) |
| ⊢ ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)}) | ||
| Definition | df-mat2pmat 22594* | Transformation of a matrix (over a ring) into a matrix over the corresponding polynomial ring. (Contributed by AV, 31-Jul-2019.) |
| ⊢ matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((algSc‘(Poly1‘𝑟))‘(𝑥𝑚𝑦))))) | ||
| Definition | df-cpmat2mat 22595* | Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat, see m2cpminv 22647, it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019.) |
| ⊢ cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) | ||
| Theorem | cpmat 22596* | Value of the constructor of the set of all constant polynomial matrices, i.e. the set of all 𝑁 x 𝑁 matrices of polynomials over a ring 𝑅. (Contributed by AV, 15-Nov-2019.) |
| ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) | ||
| Theorem | cpmatpmat 22597 | A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) | ||
| Theorem | cpmatel 22598* | Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.) |
| ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) | ||
| Theorem | cpmatelimp 22599* | Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.) |
| ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) | ||
| Theorem | cpmatel2 22600* | Another property of a constant polynomial matrix. (Contributed by AV, 16-Nov-2019.) (Proof shortened by AV, 27-Nov-2019.) |
| ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑘 ∈ 𝐾 (𝑖𝑀𝑗) = (𝐴‘𝑘))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |