| Metamath
Proof Explorer Theorem List (p. 226 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | csubma 22501 | Syntax for submatrices of a square matrix. |
| class subMat | ||
| Definition | df-subma 22502* | Define the submatrices of a square matrix. A submatrix is obtained by deleting a row and a column of the original matrix. Since the indices of a matrix need not to be sequential integers, it does not matter that there may be gaps in the numbering of the indices for the submatrix. The determinants of such submatrices are called the "minors" of the original matrix. (Contributed by AV, 27-Dec-2018.) |
| ⊢ subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) | ||
| Theorem | submabas 22503* | Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁) → (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅))) | ||
| Theorem | submafval 22504* | First substitution for a submatrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ 𝑄 = (𝑚 ∈ 𝐵 ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) | ||
| Theorem | submaval0 22505* | Second substitution for a submatrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)))) | ||
| Theorem | submaval 22506* | Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) | ||
| Theorem | submaeval 22507 | An entry of a submatrix of a square matrix. (Contributed by AV, 28-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (𝑁 subMat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = (𝐼𝑀𝐽)) | ||
| Theorem | 1marepvsma1 22508 | The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
| ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) & ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) & ⊢ 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝑋)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) | ||
| Syntax | cmdat 22509 | Syntax for the matrix determinant function. |
| class maDet | ||
| Definition | df-mdet 22510* | Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib 22512). The properties of the axiomatic definition of a determinant according to [Weierstrass] p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf 22520. Multilineary means "linear for each row" - the additivity is shown by mdetrlin 22527, the homogeneity by mdetrsca 22528. Furthermore, it is shown that the determinant function is alternating (see mdetralt 22533) and normalized (see mdet1 22526). Finally, uniqueness is shown by mdetuni 22547. As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib 22512. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 10-Jul-2018.) |
| ⊢ maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) | ||
| Theorem | mdetfval 22511* | First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) | ||
| Theorem | mdetleib 22512* | Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in [Lang] p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by SO, 9-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) | ||
| Theorem | mdetleib2 22513* | Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥)))))))) | ||
| Theorem | nfimdetndef 22514 | The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) ⇒ ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) | ||
| Theorem | mdetfval1 22515* | First substitution of an alternative determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by AV, 27-Dec-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) | ||
| Theorem | mdetleib1 22516* | Full substitution of an alternative determinant definition (also known as Leibniz' Formula). (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by AV, 26-Dec-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) | ||
| Theorem | mdet0pr 22517 | The determinant function for 0-dimensional matrices on a given ring is the function mapping the empty set to the unity element of that ring. (Contributed by AV, 28-Feb-2019.) |
| ⊢ (𝑅 ∈ Ring → (∅ maDet 𝑅) = {〈∅, (1r‘𝑅)〉}) | ||
| Theorem | mdet0f1o 22518 | The determinant function for 0-dimensional matrices on a given ring is a bijection from the singleton containing the empty set (empty matrix) onto the singleton containing the unity element of that ring. (Contributed by AV, 28-Feb-2019.) |
| ⊢ (𝑅 ∈ Ring → (∅ maDet 𝑅):{∅}–1-1-onto→{(1r‘𝑅)}) | ||
| Theorem | mdet0fv0 22519 | The determinant of the empty matrix on a given ring is the unity element of that ring. (Contributed by AV, 28-Feb-2019.) |
| ⊢ (𝑅 ∈ Ring → ((∅ maDet 𝑅)‘∅) = (1r‘𝑅)) | ||
| Theorem | mdetf 22520 | Functionality of the determinant, see also definition in [Lang] p. 513. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶𝐾) | ||
| Theorem | mdetcl 22521 | The determinant evaluates to an element of the base ring. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by AV, 7-Feb-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) ∈ 𝐾) | ||
| Theorem | m1detdiag 22522 | The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝐼𝑀𝐼)) | ||
| Theorem | mdetdiaglem 22523* | Lemma for mdetdiag 22524. Previously part of proof for mdet1 22526. (Contributed by SO, 10-Jul-2018.) (Revised by AV, 17-Aug-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐻 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁))) → (((𝑍 ∘ 𝑆)‘𝑃) · (𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑘)))) = 0 ) | ||
| Theorem | mdetdiag 22524* | The determinant of a diagonal matrix is the product of the entries in the diagonal. (Contributed by AV, 17-Aug-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝐷‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))))) | ||
| Theorem | mdetdiagid 22525* | The determinant of a diagonal matrix with identical entries is the power of the entry in the diagonal. (Contributed by AV, 17-Aug-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝐷‘𝑀) = ((♯‘𝑁) · 𝑋))) | ||
| Theorem | mdet1 22526 | The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in [Lang] p. 513. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 25-Nov-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐼 = (1r‘𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) | ||
| Theorem | mdetrlin 22527 | The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((𝑌 ↾ ({𝐼} × 𝑁)) ∘f + (𝑍 ↾ ({𝐼} × 𝑁)))) & ⊢ (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑌 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) & ⊢ (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) ⇒ ⊢ (𝜑 → (𝐷‘𝑋) = ((𝐷‘𝑌) + (𝐷‘𝑍))) | ||
| Theorem | mdetrsca 22528 | The determinant function is homogeneous for each row: If the matrices 𝑋 and 𝑍 are identical except for the 𝐼-th row, and the 𝐼-th row of the matrix 𝑋 is the componentwise product of the 𝐼-th row of the matrix 𝑍 and the scalar 𝑌, then the determinant of 𝑋 is the determinant of 𝑍 multiplied by 𝑌. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → (𝑋 ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝑌}) ∘f · (𝑍 ↾ ({𝐼} × 𝑁)))) & ⊢ (𝜑 → (𝑋 ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑍 ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) ⇒ ⊢ (𝜑 → (𝐷‘𝑋) = (𝑌 · (𝐷‘𝑍))) | ||
| Theorem | mdetrsca2 22529* | The determinant function is homogeneous for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌))) = (𝐹 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))))) | ||
| Theorem | mdetr0 22530* | The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) = 0 ) | ||
| Theorem | mdet0 22531 | The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑍 = (0g‘𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷‘𝑍) = 0 ) | ||
| Theorem | mdetrlin2 22532* | The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))) | ||
| Theorem | mdetralt 22533* | The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 23-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → ∀𝑎 ∈ 𝑁 (𝐼𝑋𝑎) = (𝐽𝑋𝑎)) ⇒ ⊢ (𝜑 → (𝐷‘𝑋) = 0 ) | ||
| Theorem | mdetralt2 22534* | The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) ⇒ ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) | ||
| Theorem | mdetero 22535* | The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) & ⊢ (𝜑 → 𝑊 ∈ 𝐾) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) ⇒ ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + (𝑊 · 𝑌)), if(𝑖 = 𝐽, 𝑌, 𝑍)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑌, 𝑍))))) | ||
| Theorem | mdettpos 22536 | Determinant is invariant under transposition. Proposition 4.8 in [Lang] p. 514. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘tpos 𝑀) = (𝐷‘𝑀)) | ||
| Theorem | mdetunilem1 22537* | Lemma for mdetuni 22547. (Contributed by SO, 14-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) ⇒ ⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → (𝐷‘𝐸) = 0 ) | ||
| Theorem | mdetunilem2 22538* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → (𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺)) & ⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → 𝐹 ∈ 𝐾) & ⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐻 ∈ 𝐾) ⇒ ⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 ) | ||
| Theorem | mdetunilem3 22539* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) ⇒ ⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝐵) ∧ (𝐺 ∈ 𝐵 ∧ 𝐻 ∈ 𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((𝐹 ↾ ({𝐻} × 𝑁)) ∘f + (𝐺 ↾ ({𝐻} × 𝑁)))) ∧ ((𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐹 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐷‘𝐸) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
| Theorem | mdetunilem4 22540* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) ⇒ ⊢ ((𝜑 ∧ (𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵) ∧ (𝐻 ∈ 𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘f · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐷‘𝐸) = (𝐹 · (𝐷‘𝐺))) | ||
| Theorem | mdetunilem5 22541* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → 𝐸 ∈ 𝑁) & ⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾)) ⇒ ⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))) | ||
| Theorem | mdetunilem6 22542* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → (𝐸 ∈ 𝑁 ∧ 𝐹 ∈ 𝑁 ∧ 𝐸 ≠ 𝐹)) & ⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → (𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾)) & ⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐼 ∈ 𝐾) ⇒ ⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))))) | ||
| Theorem | mdetunilem7 22543* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) ⇒ ⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝐸‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘𝐹))) | ||
| Theorem | mdetunilem8 22544* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 0 ) ⇒ ⊢ ((𝜑 ∧ 𝐸:𝑁⟶𝑁) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if((𝐸‘𝑎) = 𝑏, 1 , 0 ))) = 0 ) | ||
| Theorem | mdetunilem9 22545* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 0 ) & ⊢ 𝑌 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )} ⇒ ⊢ (𝜑 → 𝐷 = (𝐵 × { 0 })) | ||
| Theorem | mdetuni0 22546* | Lemma for mdetuni 22547. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ 𝐸 = (𝑁 maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) | ||
| Theorem | mdetuni 22547* | According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐷:𝐵⟶𝐾) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) & ⊢ 𝐸 = (𝑁 maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 1 ) ⇒ ⊢ (𝜑 → (𝐷‘𝐹) = (𝐸‘𝐹)) | ||
| Theorem | mdetmul 22548 | Multiplicativity of the determinant function: the determinant of a matrix product of square matrices equals the product of their determinants. Proposition 4.15 in [Lang] p. 517. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐷‘(𝐹 ∙ 𝐺)) = ((𝐷‘𝐹) · (𝐷‘𝐺))) | ||
| Theorem | m2detleiblem1 22549 | Lemma 1 for m2detleib 22556. (Contributed by AV, 12-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) | ||
| Theorem | m2detleiblem5 22550 | Lemma 5 for m2detleib 22556. (Contributed by AV, 20-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉}) → (𝑌‘(𝑆‘𝑄)) = 1 ) | ||
| Theorem | m2detleiblem6 22551 | Lemma 6 for m2detleib 22556. (Contributed by AV, 20-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) | ||
| Theorem | m2detleiblem7 22552 | Lemma 7 for m2detleib 22556. (Contributed by AV, 20-Dec-2018.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋 − 𝑍)) | ||
| Theorem | m2detleiblem2 22553* | Lemma 2 for m2detleib 22556. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) | ||
| Theorem | m2detleiblem3 22554* | Lemma 3 for m2detleib 22556. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (+g‘𝐺) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 1〉, 〈2, 2〉} ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2))) | ||
| Theorem | m2detleiblem4 22555* | Lemma 4 for m2detleib 22556. (Contributed by AV, 20-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (+g‘𝐺) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉} ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2))) | ||
| Theorem | m2detleib 22556 | Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝑁 = {1, 2} & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ − = (-g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) | ||
| Syntax | cmadu 22557 | Syntax for the matrix adjugate/adjunct function. |
| class maAdju | ||
| Syntax | cminmar1 22558 | Syntax for the minor matrices of a square matrix. |
| class minMatR1 | ||
| Definition | df-madu 22559* | Define the adjugate or adjunct (matrix of cofactors) of a square matrix. This definition gives the standard cofactors, however the internal minors are not the standard minors, see definition in [Lang] p. 518. (Contributed by Stefan O'Rear, 7-Sep-2015.) (Revised by SO, 10-Jul-2018.) |
| ⊢ maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))))) | ||
| Definition | df-minmar1 22560* | Define the matrices whose determinants are the minors of a square matrix. In contrast to the standard definition of minors, a row is replaced by 0's and one 1 instead of deleting the column and row (e.g., definition in [Lang] p. 515). By this, the determinant of such a matrix is equal to the minor determined in the standard way (as determinant of a submatrix, see df-subma 22502- note that the matrix is transposed compared with the submatrix defined in df-subma 22502, but this does not matter because the determinants are the same, see mdettpos 22536). Such matrices are used in the definition of an adjunct of a square matrix, see df-madu 22559. (Contributed by AV, 27-Dec-2018.) |
| ⊢ minMatR1 = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)))))) | ||
| Theorem | mndifsplit 22561 | Lemma for maducoeval2 22565. (Contributed by SO, 16-Jul-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ (𝜑 ∧ 𝜓)) → if((𝜑 ∨ 𝜓), 𝐴, 0 ) = (if(𝜑, 𝐴, 0 ) + if(𝜓, 𝐴, 0 ))) | ||
| Theorem | madufval 22562* | First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) | ||
| Theorem | maduval 22563* | Second substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) | ||
| Theorem | maducoeval 22564* | An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) | ||
| Theorem | maducoeval2 22565* | An entry of the adjunct (cofactor) matrix. (Contributed by SO, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))))) | ||
| Theorem | maduf 22566 | Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) | ||
| Theorem | madutpos 22567 | The adjuct of a transposed matrix is the transposition of the adjunct of the matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽‘𝑀)) | ||
| Theorem | madugsum 22568* | The determinant of a matrix with a row 𝐿 consisting of the same element 𝑋 is the sum of the elements of the 𝐿-th column of the adjunct of the matrix multiplied with 𝑋. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐿 ∈ 𝑁) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ 𝑁 ↦ (𝑋 · (𝑖(𝐽‘𝑀)𝐿)))) = (𝐷‘(𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))))) | ||
| Theorem | madurid 22569 | Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ · = (.r‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing) → (𝑀 · (𝐽‘𝑀)) = ((𝐷‘𝑀) ∙ 1 )) | ||
| Theorem | madulid 22570 | Multiplying the adjunct of a matrix with the matrix results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ · = (.r‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing) → ((𝐽‘𝑀) · 𝑀) = ((𝐷‘𝑀) ∙ 1 )) | ||
| Theorem | minmar1fval 22571* | First substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝑄 = (𝑚 ∈ 𝐵 ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))) | ||
| Theorem | minmar1val0 22572* | Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) | ||
| Theorem | minmar1val 22573* | Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) | ||
| Theorem | minmar1eval 22574 | An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑄 = (𝑁 minMatR1 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) | ||
| Theorem | minmar1marrep 22575 | The minor matrix is a special case of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019.) (Revised by AV, 4-Jul-2022.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅) 1 )) | ||
| Theorem | minmar1cl 22576 | Closure of the row replacement function for square matrices: The matrix for a minor is a matrix. (Contributed by AV, 13-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐿) ∈ 𝐵) | ||
| Theorem | maducoevalmin1 22577 | The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐽 = (𝑁 maAdju 𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) | ||
According to Wikipedia ("Laplace expansion", 08-Mar-2019, https://en.wikipedia.org/wiki/Laplace_expansion) "In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression for the determinant det(B) of an n x n -matrix B that is a weighted sum of the determinants of n sub-matrices of B, each of size (n-1) x (n-1)". The expansion is usually performed for a row of matrix B (alternately for a column of matrix B). The mentioned "sub-matrices" are the matrices resultung from deleting the i-th row and the j-th column of matrix B. The mentioned "weights" (factors/coefficients) are the elements at position i and j in matrix B. If the expansion is performed for a row, the coefficients are the elements of the selected row. In the following, only the case where the row for the expansion contains only the zero element of the underlying ring except at the diagonal position. By this, the sum for the Laplace expansion is reduced to one summand, consisting of the element at the diagonal position multiplied with the determinant of the corresponding submatrix, see smadiadetg 22598 or smadiadetr 22600. | ||
| Theorem | symgmatr01lem 22578* | Lemma for symgmatr01 22579. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵)) | ||
| Theorem | symgmatr01 22579* | Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 (𝑘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑘)) = 0 )) | ||
| Theorem | gsummatr01lem1 22580* | Lemma A for gsummatr01 22584. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} ⇒ ⊢ ((𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁) → (𝑄‘𝑋) ∈ 𝑁) | ||
| Theorem | gsummatr01lem2 22581* | Lemma B for gsummatr01 22584. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} ⇒ ⊢ ((𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑋𝐴(𝑄‘𝑋)) ∈ (Base‘𝐺))) | ||
| Theorem | gsummatr01lem3 22582* | Lemma 1 for gsummatr01 22584. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = (Base‘𝐺) ⇒ ⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)))) | ||
| Theorem | gsummatr01lem4 22583* | Lemma 2 for gsummatr01 22584. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = (Base‘𝐺) ⇒ ⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))) | ||
| Theorem | gsummatr01 22584* | Lemma 1 for smadiadetlem4 22594. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑆 = (Base‘𝐺) ⇒ ⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) | ||
| Theorem | marep01ma 22585* | Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵) | ||
| Theorem | smadiadetlem0 22586* | Lemma 0 for smadiadet 22595: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)))) = 0 )) | ||
| Theorem | smadiadetlem1 22587* | Lemma 1 for smadiadet 22595: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))) ∈ (Base‘𝑅)) | ||
| Theorem | smadiadetlem1a 22588* | Lemma 1a for smadiadet 22595: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) | ||
| Theorem | smadiadetlem2 22589* | Lemma 2 for smadiadet 22595: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = 0 ) | ||
| Theorem | smadiadetlem3lem0 22590* | Lemma 0 for smadiadetlem3 22593. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ 𝑊) → (((𝑌 ∘ 𝑍)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑄‘𝑛))))) ∈ (Base‘𝑅)) | ||
| Theorem | smadiadetlem3lem1 22591* | Lemma 1 for smadiadetlem3 22593. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))):𝑊⟶(Base‘𝑅)) | ||
| Theorem | smadiadetlem3lem2 22592* | Lemma 2 for smadiadetlem3 22593. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ran (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) ⊆ ((Cntz‘𝑅)‘ran (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) | ||
| Theorem | smadiadetlem3 22593* | Lemma 3 for smadiadet 22595. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) | ||
| Theorem | smadiadetlem4 22594* | Lemma 4 for smadiadet 22595. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) & ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) | ||
| Theorem | smadiadet 22595 | The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾))) | ||
| Theorem | smadiadetglem1 22596 | Lemma 1 for smadiadetg 22598. (Contributed by AV, 13-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁))) | ||
| Theorem | smadiadetglem2 22597 | Lemma 2 for smadiadetg 22598. (Contributed by AV, 14-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)))) | ||
| Theorem | smadiadetg 22598 | The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. (Contributed by AV, 14-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑅 ∈ CRing & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝐷‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆 · (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) | ||
| Theorem | smadiadetg0 22599 | Lemma for smadiadetr 22600: version of smadiadetg 22598 with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019.) |
| ⊢ 𝑅 ∈ CRing ⇒ ⊢ ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) | ||
| Theorem | smadiadetr 22600 | The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 22598. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.) |
| ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |