MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submafval Structured version   Visualization version   GIF version

Theorem submafval 22072
Description: First substitution for a submatrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submafval 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem submafval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.q . 2 𝑄 = (𝑁 subMat 𝑅)
2 oveq12 7414 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 submafval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3eqtr4di 2790 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6892 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 submafval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6eqtr4di 2790 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpl 483 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
9 difeq1 4114 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 ∖ {𝑘}) = (𝑁 ∖ {𝑘}))
109adantr 481 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ∖ {𝑘}) = (𝑁 ∖ {𝑘}))
11 difeq1 4114 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 ∖ {𝑙}) = (𝑁 ∖ {𝑙}))
1211adantr 481 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ∖ {𝑙}) = (𝑁 ∖ {𝑙}))
13 eqidd 2733 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑚𝑗) = (𝑖𝑚𝑗))
1410, 12, 13mpoeq123dv 7480 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))
158, 8, 14mpoeq123dv 7480 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
167, 15mpteq12dv 5238 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
17 df-subma 22070 . . . 4 subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
186fvexi 6902 . . . . 5 𝐵 ∈ V
1918mptex 7221 . . . 4 (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) ∈ V
2016, 17, 19ovmpoa 7559 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
2117mpondm0 7643 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = ∅)
22 mpt0 6689 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) = ∅
2321, 22eqtr4di 2790 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
243fveq2i 6891 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
256, 24eqtri 2760 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
26 matbas0pc 21900 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
2725, 26eqtrid 2784 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
2827mpteq1d 5242 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) = (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
2923, 28eqtr4d 2775 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
3020, 29pm2.61i 182 . 2 (𝑁 subMat 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
311, 30eqtri 2760 1 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3944  c0 4321  {csn 4627  cmpt 5230  cfv 6540  (class class class)co 7405  cmpo 7407  Basecbs 17140   Mat cmat 21898   subMat csubma 22069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-1cn 11164  ax-addcl 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-nn 12209  df-slot 17111  df-ndx 17123  df-base 17141  df-mat 21899  df-subma 22070
This theorem is referenced by:  submaval0  22073
  Copyright terms: Public domain W3C validator