Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  submafval Structured version   Visualization version   GIF version

Theorem submafval 21225
 Description: First substitution for a submatrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submafval 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem submafval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.q . 2 𝑄 = (𝑁 subMat 𝑅)
2 oveq12 7154 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 submafval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3eqtr4di 2851 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6659 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 submafval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6eqtr4di 2851 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpl 486 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
9 difeq1 4046 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 ∖ {𝑘}) = (𝑁 ∖ {𝑘}))
109adantr 484 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ∖ {𝑘}) = (𝑁 ∖ {𝑘}))
11 difeq1 4046 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 ∖ {𝑙}) = (𝑁 ∖ {𝑙}))
1211adantr 484 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ∖ {𝑙}) = (𝑁 ∖ {𝑙}))
13 eqidd 2799 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑚𝑗) = (𝑖𝑚𝑗))
1410, 12, 13mpoeq123dv 7218 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))
158, 8, 14mpoeq123dv 7218 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
167, 15mpteq12dv 5119 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
17 df-subma 21223 . . . 4 subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
186fvexi 6669 . . . . 5 𝐵 ∈ V
1918mptex 6973 . . . 4 (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) ∈ V
2016, 17, 19ovmpoa 7295 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
2117mpondm0 7377 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = ∅)
22 mpt0 6470 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) = ∅
2321, 22eqtr4di 2851 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
243fveq2i 6658 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
256, 24eqtri 2821 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
26 matbas0pc 21055 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
2725, 26syl5eq 2845 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
2827mpteq1d 5123 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))) = (𝑚 ∈ ∅ ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
2923, 28eqtr4d 2836 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 subMat 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
3020, 29pm2.61i 185 . 2 (𝑁 subMat 𝑅) = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
311, 30eqtri 2821 1 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3442   ∖ cdif 3880  ∅c0 4246  {csn 4528   ↦ cmpt 5114  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147  Basecbs 16495   Mat cmat 21053   subMat csubma 21222 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-slot 16499  df-base 16501  df-mat 21054  df-subma 21223 This theorem is referenced by:  submaval0  21226
 Copyright terms: Public domain W3C validator