| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-succf | Structured version Visualization version GIF version | ||
| Description: Define the successor function. See brsuccf 35942 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
| Ref | Expression |
|---|---|
| df-succf | ⊢ Succ = (Cup ∘ ( I ⊗ Singleton)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csuccf 35849 | . 2 class Succ | |
| 2 | ccup 35847 | . . 3 class Cup | |
| 3 | cid 5577 | . . . 4 class I | |
| 4 | csingle 35839 | . . . 4 class Singleton | |
| 5 | 3, 4 | ctxp 35831 | . . 3 class ( I ⊗ Singleton) |
| 6 | 2, 5 | ccom 5689 | . 2 class (Cup ∘ ( I ⊗ Singleton)) |
| 7 | 1, 6 | wceq 1540 | 1 wff Succ = (Cup ∘ ( I ⊗ Singleton)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: brsuccf 35942 |
| Copyright terms: Public domain | W3C validator |