Detailed syntax breakdown of Definition df-apply
Step | Hyp | Ref
| Expression |
1 | | capply 34147 |
. 2
class
Apply |
2 | | cbigcup 34136 |
. . . 4
class Bigcup |
3 | 2, 2 | ccom 5593 |
. . 3
class ( Bigcup ∘ Bigcup
) |
4 | | cvv 3432 |
. . . . . 6
class
V |
5 | 4, 4 | cxp 5587 |
. . . . 5
class (V
× V) |
6 | | cep 5494 |
. . . . . . . 8
class
E |
7 | 4, 6 | ctxp 34132 |
. . . . . . 7
class (V
⊗ E ) |
8 | | csingles 34141 |
. . . . . . . . 9
class Singletons |
9 | 6, 8 | cres 5591 |
. . . . . . . 8
class ( E
↾ Singletons ) |
10 | 9, 4 | ctxp 34132 |
. . . . . . 7
class (( E
↾ Singletons ) ⊗ V) |
11 | 7, 10 | csymdif 4175 |
. . . . . 6
class ((V
⊗ E ) △ (( E ↾ Singletons )
⊗ V)) |
12 | 11 | crn 5590 |
. . . . 5
class ran ((V
⊗ E ) △ (( E ↾ Singletons )
⊗ V)) |
13 | 5, 12 | cdif 3884 |
. . . 4
class ((V
× V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) |
14 | | csingle 34140 |
. . . . . 6
class
Singleton |
15 | | cimg 34144 |
. . . . . 6
class
Img |
16 | 14, 15 | ccom 5593 |
. . . . 5
class
(Singleton ∘ Img) |
17 | | cid 5488 |
. . . . . 6
class
I |
18 | 17, 14 | cpprod 34133 |
. . . . 5
class pprod( I
, Singleton) |
19 | 16, 18 | ccom 5593 |
. . . 4
class
((Singleton ∘ Img) ∘ pprod( I , Singleton)) |
20 | 13, 19 | ccom 5593 |
. . 3
class (((V
× V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘
Img) ∘ pprod( I , Singleton))) |
21 | 3, 20 | ccom 5593 |
. 2
class (( Bigcup ∘ Bigcup )
∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾
Singletons ) ⊗ V))) ∘ ((Singleton
∘ Img) ∘ pprod( I , Singleton)))) |
22 | 1, 21 | wceq 1539 |
1
wff Apply =
(( Bigcup ∘ Bigcup
) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E
↾ Singletons ) ⊗ V))) ∘
((Singleton ∘ Img) ∘ pprod( I , Singleton)))) |