| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsuccf | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) |
| Ref | Expression |
|---|---|
| brsuccf.1 | ⊢ 𝐴 ∈ V |
| brsuccf.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brsuccf | ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-succf 35914 | . . 3 ⊢ Succ = (Cup ∘ ( I ⊗ Singleton)) | |
| 2 | 1 | breqi 5095 | . 2 ⊢ (𝐴Succ𝐵 ↔ 𝐴(Cup ∘ ( I ⊗ Singleton))𝐵) |
| 3 | brsuccf.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | brsuccf.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | brco 5809 | . 2 ⊢ (𝐴(Cup ∘ ( I ⊗ Singleton))𝐵 ↔ ∃𝑥(𝐴( I ⊗ Singleton)𝑥 ∧ 𝑥Cup𝐵)) |
| 6 | 3, 4 | lemsuccf 35983 | . 2 ⊢ (∃𝑥(𝐴( I ⊗ Singleton)𝑥 ∧ 𝑥Cup𝐵) ↔ 𝐵 = suc 𝐴) |
| 7 | 2, 5, 6 | 3bitri 297 | 1 ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 I cid 5508 ∘ ccom 5618 suc csuc 6308 ⊗ ctxp 35872 Singletoncsingle 35880 Cupccup 35888 Succcsuccf 35890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4200 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 df-singleton 35904 df-cup 35911 df-succf 35914 |
| This theorem is referenced by: dfrdg4 35995 |
| Copyright terms: Public domain | W3C validator |