Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsuccf Structured version   Visualization version   GIF version

Theorem brsuccf 34526
Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brsuccf.1 𝐴 ∈ V
brsuccf.2 𝐵 ∈ V
Assertion
Ref Expression
brsuccf (𝐴Succ𝐵𝐵 = suc 𝐴)

Proof of Theorem brsuccf
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-succf 34457 . . 3 Succ = (Cup ∘ ( I ⊗ Singleton))
21breqi 5111 . 2 (𝐴Succ𝐵𝐴(Cup ∘ ( I ⊗ Singleton))𝐵)
3 brsuccf.1 . . 3 𝐴 ∈ V
4 brsuccf.2 . . 3 𝐵 ∈ V
53, 4brco 5826 . 2 (𝐴(Cup ∘ ( I ⊗ Singleton))𝐵 ↔ ∃𝑥(𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵))
6 opex 5421 . . . . 5 𝐴, {𝐴}⟩ ∈ V
7 breq1 5108 . . . . 5 (𝑥 = ⟨𝐴, {𝐴}⟩ → (𝑥Cup𝐵 ↔ ⟨𝐴, {𝐴}⟩Cup𝐵))
86, 7ceqsexv 3494 . . . 4 (∃𝑥(𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵) ↔ ⟨𝐴, {𝐴}⟩Cup𝐵)
9 snex 5388 . . . . 5 {𝐴} ∈ V
103, 9, 4brcup 34524 . . . 4 (⟨𝐴, {𝐴}⟩Cup𝐵𝐵 = (𝐴 ∪ {𝐴}))
118, 10bitri 274 . . 3 (∃𝑥(𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵) ↔ 𝐵 = (𝐴 ∪ {𝐴}))
123brtxp2 34466 . . . . . 6 (𝐴( I ⊗ Singleton)𝑥 ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏))
1312anbi1i 624 . . . . 5 ((𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵))
14 3anass 1095 . . . . . . . . 9 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ↔ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝐴 I 𝑎𝐴Singleton𝑏)))
1514anbi1i 624 . . . . . . . 8 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ∧ 𝑥Cup𝐵))
16 an32 644 . . . . . . . 8 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ∧ 𝑥Cup𝐵) ↔ ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ∧ (𝐴 I 𝑎𝐴Singleton𝑏)))
17 vex 3449 . . . . . . . . . . . . 13 𝑎 ∈ V
1817ideq 5808 . . . . . . . . . . . 12 (𝐴 I 𝑎𝐴 = 𝑎)
19 eqcom 2743 . . . . . . . . . . . 12 (𝐴 = 𝑎𝑎 = 𝐴)
2018, 19bitri 274 . . . . . . . . . . 11 (𝐴 I 𝑎𝑎 = 𝐴)
21 vex 3449 . . . . . . . . . . . 12 𝑏 ∈ V
223, 21brsingle 34502 . . . . . . . . . . 11 (𝐴Singleton𝑏𝑏 = {𝐴})
2320, 22anbi12i 627 . . . . . . . . . 10 ((𝐴 I 𝑎𝐴Singleton𝑏) ↔ (𝑎 = 𝐴𝑏 = {𝐴}))
2423anbi1i 624 . . . . . . . . 9 (((𝐴 I 𝑎𝐴Singleton𝑏) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)) ↔ ((𝑎 = 𝐴𝑏 = {𝐴}) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
25 ancom 461 . . . . . . . . 9 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ↔ ((𝐴 I 𝑎𝐴Singleton𝑏) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
26 df-3an 1089 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)) ↔ ((𝑎 = 𝐴𝑏 = {𝐴}) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
2724, 25, 263bitr4i 302 . . . . . . . 8 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ↔ (𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
2815, 16, 273bitri 296 . . . . . . 7 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ (𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
29282exbii 1851 . . . . . 6 (∃𝑎𝑏((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
30 19.41vv 1954 . . . . . 6 (∃𝑎𝑏((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵))
31 opeq1 4830 . . . . . . . . 9 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
3231eqeq2d 2747 . . . . . . . 8 (𝑎 = 𝐴 → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, 𝑏⟩))
3332anbi1d 630 . . . . . . 7 (𝑎 = 𝐴 → ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, 𝑏⟩ ∧ 𝑥Cup𝐵)))
34 opeq2 4831 . . . . . . . . 9 (𝑏 = {𝐴} → ⟨𝐴, 𝑏⟩ = ⟨𝐴, {𝐴}⟩)
3534eqeq2d 2747 . . . . . . . 8 (𝑏 = {𝐴} → (𝑥 = ⟨𝐴, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, {𝐴}⟩))
3635anbi1d 630 . . . . . . 7 (𝑏 = {𝐴} → ((𝑥 = ⟨𝐴, 𝑏⟩ ∧ 𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵)))
373, 9, 33, 36ceqsex2v 3499 . . . . . 6 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
3829, 30, 373bitr3i 300 . . . . 5 ((∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
3913, 38bitri 274 . . . 4 ((𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
4039exbii 1850 . . 3 (∃𝑥(𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ ∃𝑥(𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
41 df-suc 6323 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
4241eqeq2i 2749 . . 3 (𝐵 = suc 𝐴𝐵 = (𝐴 ∪ {𝐴}))
4311, 40, 423bitr4i 302 . 2 (∃𝑥(𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ 𝐵 = suc 𝐴)
442, 5, 433bitri 296 1 (𝐴Succ𝐵𝐵 = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cun 3908  {csn 4586  cop 4592   class class class wbr 5105   I cid 5530  ccom 5637  suc csuc 6319  ctxp 34415  Singletoncsingle 34423  Cupccup 34431  Succcsuccf 34433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-symdif 4202  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-eprel 5537  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504  df-1st 7921  df-2nd 7922  df-txp 34439  df-singleton 34447  df-cup 34454  df-succf 34457
This theorem is referenced by:  dfrdg4  34536
  Copyright terms: Public domain W3C validator