Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsuccf Structured version   Visualization version   GIF version

Theorem brsuccf 33404
Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brsuccf.1 𝐴 ∈ V
brsuccf.2 𝐵 ∈ V
Assertion
Ref Expression
brsuccf (𝐴Succ𝐵𝐵 = suc 𝐴)

Proof of Theorem brsuccf
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-succf 33335 . . 3 Succ = (Cup ∘ ( I ⊗ Singleton))
21breqi 5074 . 2 (𝐴Succ𝐵𝐴(Cup ∘ ( I ⊗ Singleton))𝐵)
3 brsuccf.1 . . 3 𝐴 ∈ V
4 brsuccf.2 . . 3 𝐵 ∈ V
53, 4brco 5743 . 2 (𝐴(Cup ∘ ( I ⊗ Singleton))𝐵 ↔ ∃𝑥(𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵))
6 opex 5358 . . . . 5 𝐴, {𝐴}⟩ ∈ V
7 breq1 5071 . . . . 5 (𝑥 = ⟨𝐴, {𝐴}⟩ → (𝑥Cup𝐵 ↔ ⟨𝐴, {𝐴}⟩Cup𝐵))
86, 7ceqsexv 3543 . . . 4 (∃𝑥(𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵) ↔ ⟨𝐴, {𝐴}⟩Cup𝐵)
9 snex 5334 . . . . 5 {𝐴} ∈ V
103, 9, 4brcup 33402 . . . 4 (⟨𝐴, {𝐴}⟩Cup𝐵𝐵 = (𝐴 ∪ {𝐴}))
118, 10bitri 277 . . 3 (∃𝑥(𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵) ↔ 𝐵 = (𝐴 ∪ {𝐴}))
123brtxp2 33344 . . . . . 6 (𝐴( I ⊗ Singleton)𝑥 ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏))
1312anbi1i 625 . . . . 5 ((𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵))
14 3anass 1091 . . . . . . . . 9 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ↔ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝐴 I 𝑎𝐴Singleton𝑏)))
1514anbi1i 625 . . . . . . . 8 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ∧ 𝑥Cup𝐵))
16 an32 644 . . . . . . . 8 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ∧ 𝑥Cup𝐵) ↔ ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ∧ (𝐴 I 𝑎𝐴Singleton𝑏)))
17 vex 3499 . . . . . . . . . . . . 13 𝑎 ∈ V
1817ideq 5725 . . . . . . . . . . . 12 (𝐴 I 𝑎𝐴 = 𝑎)
19 eqcom 2830 . . . . . . . . . . . 12 (𝐴 = 𝑎𝑎 = 𝐴)
2018, 19bitri 277 . . . . . . . . . . 11 (𝐴 I 𝑎𝑎 = 𝐴)
21 vex 3499 . . . . . . . . . . . 12 𝑏 ∈ V
223, 21brsingle 33380 . . . . . . . . . . 11 (𝐴Singleton𝑏𝑏 = {𝐴})
2320, 22anbi12i 628 . . . . . . . . . 10 ((𝐴 I 𝑎𝐴Singleton𝑏) ↔ (𝑎 = 𝐴𝑏 = {𝐴}))
2423anbi1i 625 . . . . . . . . 9 (((𝐴 I 𝑎𝐴Singleton𝑏) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)) ↔ ((𝑎 = 𝐴𝑏 = {𝐴}) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
25 ancom 463 . . . . . . . . 9 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ↔ ((𝐴 I 𝑎𝐴Singleton𝑏) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
26 df-3an 1085 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)) ↔ ((𝑎 = 𝐴𝑏 = {𝐴}) ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
2724, 25, 263bitr4i 305 . . . . . . . 8 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ∧ (𝐴 I 𝑎𝐴Singleton𝑏)) ↔ (𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
2815, 16, 273bitri 299 . . . . . . 7 (((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ (𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
29282exbii 1849 . . . . . 6 (∃𝑎𝑏((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)))
30 19.41vv 1951 . . . . . 6 (∃𝑎𝑏((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵))
31 opeq1 4805 . . . . . . . . 9 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
3231eqeq2d 2834 . . . . . . . 8 (𝑎 = 𝐴 → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, 𝑏⟩))
3332anbi1d 631 . . . . . . 7 (𝑎 = 𝐴 → ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, 𝑏⟩ ∧ 𝑥Cup𝐵)))
34 opeq2 4806 . . . . . . . . 9 (𝑏 = {𝐴} → ⟨𝐴, 𝑏⟩ = ⟨𝐴, {𝐴}⟩)
3534eqeq2d 2834 . . . . . . . 8 (𝑏 = {𝐴} → (𝑥 = ⟨𝐴, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, {𝐴}⟩))
3635anbi1d 631 . . . . . . 7 (𝑏 = {𝐴} → ((𝑥 = ⟨𝐴, 𝑏⟩ ∧ 𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵)))
373, 9, 33, 36ceqsex2v 3546 . . . . . 6 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐴} ∧ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑥Cup𝐵)) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
3829, 30, 373bitr3i 303 . . . . 5 ((∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐴Singleton𝑏) ∧ 𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
3913, 38bitri 277 . . . 4 ((𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ (𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
4039exbii 1848 . . 3 (∃𝑥(𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ ∃𝑥(𝑥 = ⟨𝐴, {𝐴}⟩ ∧ 𝑥Cup𝐵))
41 df-suc 6199 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
4241eqeq2i 2836 . . 3 (𝐵 = suc 𝐴𝐵 = (𝐴 ∪ {𝐴}))
4311, 40, 423bitr4i 305 . 2 (∃𝑥(𝐴( I ⊗ Singleton)𝑥𝑥Cup𝐵) ↔ 𝐵 = suc 𝐴)
442, 5, 433bitri 299 1 (𝐴Succ𝐵𝐵 = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  cun 3936  {csn 4569  cop 4575   class class class wbr 5068   I cid 5461  ccom 5561  suc csuc 6195  ctxp 33293  Singletoncsingle 33301  Cupccup 33309  Succcsuccf 33311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-symdif 4221  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-eprel 5467  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692  df-txp 33317  df-singleton 33325  df-cup 33332  df-succf 33335
This theorem is referenced by:  dfrdg4  33414
  Copyright terms: Public domain W3C validator